Я хочу максимально эффективно имитировать движение случайного бродяги в сети. Ниже я показываю игрушечную модель с тремя подходами, которые я пробовал до сих пор. Я должен отметить, что в моей исходной задаче ребра сети фиксированы, однако веса ребер могут быть обновлены (то есть список соседей такой же, но веса могут измениться).
using QuantEcon
using LightGraphs
using Distributions
using StatsBase
n = 700 #number of nodes
#setting an arbitrary network and its transition matrix
G_erdos = erdos_renyi(n, 15/n)
A_erdos = adjacency_matrix(G_erdos) + eye(n, n);
A_transition = A_erdos ./ sum(A_erdos, 2);
##Method 1
#using QuantEcon library
function QE_markov_draw(i::Int, A::Array{Float64,2})
d = DiscreteRV(A[i, :]);
return rand(d, 1)
end
##Method 2
#using a simple random draw
function matrix_draw(i::Int, A::Array{Float64,2}, choices::Array{Int64,1})
return sample(choices, Weights(A[i, :]))
end
##Method 3
# The matrix may be sparse. Therefore I obtain first list of neighbors and weights
#for each node. Then run sample using the list of neighbors and weights.
function neighbor_weight_list(A::Array{Float64,2}, i::Int)
n = size(A)[1]
neighbor_list = Int[]
weight_list = Float64[]
for i = 1:n
for j = 1:n
if A[i, j] > 0
push!(neighbor_list, j)
push!(weight_list, A[i, j])
end
end
end
return neighbor_list, weight_list
end
#Using sample on the reduced list.
function neigh_weights_draw(i::Int, neighs::Array{Int,1}, weigh::Array{Float64,1})
return sample(neighs, Weights(weigh))
end
neighbor_list, weight_list = neighbor_weight_list(A_transition, 1)
states = [i for i = 1:n];
println("Method 1")
@time for t = 1:100000
QE_markov_draw(3, A_transition)
end
println("Method 2")
@time for t = 1:100000
matrix_draw(3, A_transition, states)
end
println("Method 3")
@time for t = 1:100000
neigh_weights_draw(3, neighbor_list, weight_list)
end
Общие результаты показывают (после первой итерации), что метод 2 самый быстрый. Метод 3 использует наименьшее количество памяти, за которым следует метод 2, однако это может быть связано с тем, что они «питаются» на neighbor_list
и states
.
Method 1
0.327805 seconds (500.00 k allocations: 1.086 GiB, 14.70% gc time)
Method 2
0.227060 seconds (329.47 k allocations: 554.344 MiB, 11.24% gc time)
Method 3
1.224682 seconds (128.19 k allocations: 3.482 MiB)
Мне было интересно, какая реализация будет наиболее эффективной и есть ли способ ее улучшить.