Подогнать сигмовидную кривую в питоне - PullRequest
0 голосов
/ 26 января 2019

Спасибо, вперед!Я пытаюсь подогнать сигмовидную кривую по некоторым данным, ниже приведен мой код

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

====== some code in between =======

plt.scatter(drag[0].w,drag[0].s, s = 10, label = 'drag%d'%0)
def sigmoid(x,x0,k):
    y = 1.0/(1.0+np.exp(-x0*(x-k)))
    return y
popt,pcov = curve_fit(sigmoid, drag[0].w, drag[0].s)
xx = np.linspace(10,1000,10)
yy = sigmoid(xx, *popt)
plt.plot(xx,yy,'r-', label='fit')
plt.legend(loc='upper left')
plt.xlabel('weight(kg)', fontsize=12)
plt.ylabel('wing span(m)', fontsize=12)
plt.show()

, теперь он показывает график ниже, который не очень правильный Подходящая кривая - красная снизу

Каковы возможные решения?

Также я открыт для других методов подбора логистических кривых на этом наборе данных

Еще раз спасибо!

1 Ответ

0 голосов
/ 26 января 2019

Вот пример графического сборщика, использующего ваше уравнение с масштабным коэффициентом амплитуды для моих тестовых данных. В этом коде используется генетический алгоритм Scipy's diffrential Evolution для предоставления начальных оценок параметров для curve_fit (), поскольку оценки начальных параметров scipy по умолчанию для всех 1.0 не всегда являются оптимальными. Реализация дифференцированной эволюции в scipy использует алгоритм Латинского гиперкуба, чтобы обеспечить тщательный поиск пространства параметров, а для этого требуются границы, в которых можно осуществлять поиск. В этом примере эти границы взяты из данных примера, которые я предоставляю, при использовании ваших собственных данных, пожалуйста, убедитесь, что границы кажутся разумными. Обратите внимание, что диапазоны параметров гораздо проще указать, чем конкретные значения для начальных оценок параметров.

example

import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import warnings

xData = numpy.array([19.1647, 18.0189, 16.9550, 15.7683, 14.7044, 13.6269, 12.6040, 11.4309, 10.2987, 9.23465, 8.18440, 7.89789, 7.62498, 7.36571, 7.01106, 6.71094, 6.46548, 6.27436, 6.16543, 6.05569, 5.91904, 5.78247, 5.53661, 4.85425, 4.29468, 3.74888, 3.16206, 2.58882, 1.93371, 1.52426, 1.14211, 0.719035, 0.377708, 0.0226971, -0.223181, -0.537231, -0.878491, -1.27484, -1.45266, -1.57583, -1.61717])
yData = numpy.array([0.644557, 0.641059, 0.637555, 0.634059, 0.634135, 0.631825, 0.631899, 0.627209, 0.622516, 0.617818, 0.616103, 0.613736, 0.610175, 0.606613, 0.605445, 0.603676, 0.604887, 0.600127, 0.604909, 0.588207, 0.581056, 0.576292, 0.566761, 0.555472, 0.545367, 0.538842, 0.529336, 0.518635, 0.506747, 0.499018, 0.491885, 0.484754, 0.475230, 0.464514, 0.454387, 0.444861, 0.437128, 0.415076, 0.401363, 0.390034, 0.378698])


def sigmoid(x, amplitude, x0, k):
    return amplitude * 1.0/(1.0+numpy.exp(-x0*(x-k)))


# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
    warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
    val = sigmoid(xData, *parameterTuple)
    return numpy.sum((yData - val) ** 2.0)


def generate_Initial_Parameters():
    # min and max used for bounds
    maxX = max(xData)
    minX = min(xData)
    maxY = max(yData)
    minY = min(yData)

    parameterBounds = []
    parameterBounds.append([minY, maxY]) # search bounds for amplitude
    parameterBounds.append([minX, maxX]) # search bounds for x0
    parameterBounds.append([minX, maxX]) # search bounds for k

    # "seed" the numpy random number generator for repeatable results
    result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
    return result.x

# by default, differential_evolution completes by calling curve_fit() using parameter bounds
geneticParameters = generate_Initial_Parameters()

# now call curve_fit without passing bounds from the genetic algorithm,
# just in case the best fit parameters are aoutside those bounds
fittedParameters, pcov = curve_fit(sigmoid, xData, yData, geneticParameters)
print('Fitted parameters:', fittedParameters)
print()

modelPredictions = sigmoid(xData, *fittedParameters) 

absError = modelPredictions - yData

SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))

print()
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

print()


##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    # first the raw data as a scatter plot
    axes.plot(xData, yData,  'D')

    # create data for the fitted equation plot
    xModel = numpy.linspace(min(xData), max(xData))
    yModel = sigmoid(xModel, *fittedParameters)

    # now the model as a line plot
    axes.plot(xModel, yModel)

    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)
...