Здесь мой набор данных pd
, и я разделил его на данные обучения и тестирования как pd_train1
и pd_train2
sku national_inv lead_time in_transit_qty forecast_3_month forecast_6_month
1 3921548 8 12 0 0 0
2 3191009 83 2 33 157 377
3 2935810 8 4 0 0 0
4 2205847 31 4 63 70 160
5 4953497 3 12 0 0 0
6 2286884 0 8 0 0 0
forecast_9_month sales_1_month sales_3_month sales_6_month sales_9_month min_bank
1 0 1 1 2 5 2
2 603 44 98 148 156 53
3 0 0 0 1 1 0
4 223 27 90 164 219 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
potential_issue pieces_past_due perf_6_month_avg perf_12_month_avg local_bo_qty
1 0 0 0.63 0.75 0
2 0 0 0.68 0.66 0
3 0 0 0.73 0.78 0
4 0 0 0.73 0.78 0
5 0 0 0.81 0.74 0
6 0 0 0.91 0.96 0
deck_risk oe_constraint ppap_risk stop_auto_buy rev_stop went_on_backorder data
1 0 0 0 1 0 No train
2 0 0 0 1 0 No train
3 0 0 0 1 0 No train
4 0 0 1 1 0 No train
5 0 0 0 1 0 No train
6 0 0 0 1 0 No train
Я хотел создать модель lm для моих данных обучения pd_train1
Но я получаю эту ошибку, как показано ниже:
> fit=lm(went_on_backorder~.,data=pd_train1)
Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
NA/NaN/Inf in 'y'
In addition: Warning message:
In storage.mode(v) <- "double" : NAs introduced by coercion
Я пытался искать бесконечные значения:
sapply(pd_train1, function(x) sum(is.infinite(x)))
sku national_inv lead_time in_transit_qty forecast_3_month
0 0 0 0 0
forecast_6_month forecast_9_month sales_1_month sales_3_month sales_6_month
0 0 0 0 0
sales_9_month min_bank potential_issue pieces_past_due perf_6_month_avg
0 0 0 0 0
perf_12_month_avg local_bo_qty deck_risk oe_constraint ppap_risk
0 0 0 0 0
stop_auto_buy rev_stop went_on_backorder data
0 0 0 0
А также для значений NA / NaN в моих тренировочных данных, по которым я хочусделать линейную модель
sku national_inv lead_time in_transit_qty forecast_3_month
0 0 0 0 0
forecast_6_month forecast_9_month sales_1_month sales_3_month sales_6_month
0 0 0 0 0
sales_9_month min_bank potential_issue pieces_past_due perf_6_month_avg
0 0 0 0 0
perf_12_month_avg local_bo_qty deck_risk oe_constraint ppap_risk
0 0 0 0 0
stop_auto_buy rev_stop went_on_backorder
0 0 0
Inf %in% pd_train1$went_on_backorder
1] FALSE
NaN %in% pd_test$went_on_backorder
1] FALSE
Впредь я не могу получить значения NA / NaN / Inf в моем наборе данных. Может кто-нибудь помочь мне понять, почему это вызывает ошибку, пожалуйста?Здесь went_on_backorder
- моя целевая переменная.