ResourceExhaustedError при объявлении слоя Embeddings (Keras) - PullRequest
0 голосов
/ 28 сентября 2018

Я создаю NN для NLP, начиная со слоя Embedding (с использованием предварительно обученных вложений).Но когда я объявляю слой Embedding в Keras (бэкэнд Tensorflow), у меня есть ResourceExhaustedError:

ResourceExhaustedError: OOM when allocating tensor with shape[137043,300] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
 [[{{node embedding_4/random_uniform/RandomUniform}} = RandomUniform[T=DT_INT32, dtype=DT_FLOAT, seed=87654321, seed2=9524682, _device="/job:localhost/replica:0/task:0/device:GPU:0"](embedding_4/random_uniform/shape)]]
 Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

Я уже проверил Google: большая часть ResourceExhaustedError происходит во время обучения, и это потому, что оперативная памятьГПУ не достаточно большой.это исправлено уменьшением размера партии.

Но в моем случае я даже не начал тренироваться!Эта строка является проблемой:

q1 = Embedding(nb_words + 1, 
             param['embed_dim'].value, 
             weights=[word_embedding_matrix], 
             input_length=param['sentence_max_len'].value)(question1)

Здесь word_embedding_matrix - матрица размером (137043, 300), предварительно обученные вложения.

Насколько я знаю, это не займет гигантскийобъем памяти (в отличие от здесь ):

137043 * 300 * 4 байта = 53 КБ

А вот используемый графический процессор:

 +-----------------------------------------------------------------------------+
 | NVIDIA-SMI 396.26                 Driver Version: 396.26                    |
 |-------------------------------+----------------------+----------------------+
 | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
 | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
 |===============================+======================+======================|
 |   0  GeForce GTX 108...  Off  | 00000000:02:00.0 Off |                  N/A |
 | 23%   32C    P8    16W / 250W |   6956MiB / 11178MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   1  GeForce GTX 108...  Off  | 00000000:03:00.0 Off |                  N/A |
 | 23%   30C    P8    16W / 250W |    530MiB / 11178MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   2  GeForce GTX 108...  Off  | 00000000:82:00.0 Off |                  N/A |
 | 23%   34C    P8    16W / 250W |    333MiB / 11178MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   3  GeForce GTX 108...  Off  | 00000000:83:00.0 Off |                  N/A |
 | 24%   46C    P2    58W / 250W |   4090MiB / 11178MiB |     23%      Default |
 +-------------------------------+----------------------+----------------------+

 +-----------------------------------------------------------------------------+
 | Processes:                                                       GPU Memory |
 |  GPU       PID   Type   Process name                             Usage      |
 |=============================================================================|
 |    0      1087      C   uwsgi                                       1331MiB |
 |    0      1088      C   uwsgi                                       1331MiB |
 |    0      1089      C   uwsgi                                       1331MiB |
 |    0      1090      C   uwsgi                                       1331MiB |
 |    0      1091      C   uwsgi                                       1331MiB |
 |    0      4176      C   /usr/bin/python3                             289MiB |
 |    1      2631      C   ...e92/venvs/wordintent_venv/bin/python3.6   207MiB |
 |    1      4176      C   /usr/bin/python3                             313MiB |
 |    2      4176      C   /usr/bin/python3                             323MiB |
 |    3      4176      C   /usr/bin/python3                             347MiB |
 |    3     10113      C   python                                      1695MiB |
 |    3     13614      C   python3                                     1347MiB |
 |    3     14116      C   python                                       689MiB |
 +-----------------------------------------------------------------------------+

Кто-нибудь знает, почему я встречаю это исключение?

1 Ответ

0 голосов
/ 28 сентября 2018

С по этой ссылке , настройка TensorFlow так, чтобы она не выделяла максимальное GPU напрямую, похоже, решает проблему.

Запуск этого до объявления уровней модели устранил проблему:

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.3
session = tf.Session(config=config)
K.set_session(session)

Я дам некоторое время, прежде чем принять мой ответ, чтобы увидеть другие ответы.

...