Можно ли применить единый метод регрессии к данным, имеющим разные закономерности? - PullRequest
0 голосов
/ 05 октября 2018

В настоящее время я работаю над проектом, в котором я хочу оценить объем продаж для нескольких различных продуктов в зависимости от температуры, с которой некоторые продукты связаны между собой.Для одного из продуктов соотношение между продажами и температурой выглядит следующим образом:

Plot made using matplotlib.pyplot in Python

Это только один продукт, но здесь естьобщая тенденция, что после 10 градусов объем продаж увеличивается.Для других продуктов отношения могут быть более линейными, а другие могут иметь полиномиальные отношения, в то время как другие продукты могут вообще не иметь отношений.Примером другого продукта, который не имеет корреляции между продажами и температурой, может быть этот продукт:

matplotlib plot

Прежде всего, я хотел предсказать что-то только изодин продукт, поэтому я использовал продукт с первого сюжета, чтобы попробовать что-то моделировать.В итоге я разбил данные, поэтому у меня был кадр данных со всеми значениями от -5 градусов до 10 градусов, и я выполнил линейную регрессию, и аналогично я разделил от 10 градусов до 30 градусов, чтобы выполнить линейную регрессию, например:

enter image description here

Единственная проблема в том, что я делаю все возможное, чтобы мои данные соответствовали только ОДНОМУ продукту.У меня есть набор данных из 1000 продуктов, где я хотел бы иметь возможность оценить продажи НЕКОТОРЫХ продуктов на основе температуры.Я хочу как-то пройтись по всем моим наборам данных, выяснить, какие из них имеют какую-то связь между продажами и температурой, а затем автоматически применить лучшую регрессионную модель для этого конкретного продукта, чтобы оценить объем продаж для этого продукта с учетом некоторой температуры, X.

Я просмотрел кучу разных учебников по регрессии для нейронных сетей, но я просто понятия не имею, с чего начать или что искать, или если то, что я пытаюсь сделать, вообще возможно?

Ответы [ 2 ]

0 голосов
/ 16 октября 2018

За комментарии: поскольку я не могу отформатировать код в комментарии, я разместил его здесь.Ниже приведен пример подгонки поверхности к трехмерным данным, которая также отображает трехмерную диаграмму рассеяния, трехмерную поверхность и контурную диаграмму.

import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import  Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt

graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels

# 3D contour plot lines
numberOfContourLines = 16


def SurfacePlot(func, data, fittedParameters):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

    matplotlib.pyplot.grid(True)
    axes = Axes3D(f)

    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    xModel = numpy.linspace(min(x_data), max(x_data), 20)
    yModel = numpy.linspace(min(y_data), max(y_data), 20)
    X, Y = numpy.meshgrid(xModel, yModel)

    Z = func(numpy.array([X, Y]), *fittedParameters)

    axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)

    axes.scatter(x_data, y_data, z_data) # show data along with plotted surface

    axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label
    axes.set_zlabel('Z Data') # Z axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def ContourPlot(func, data, fittedParameters):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    xModel = numpy.linspace(min(x_data), max(x_data), 20)
    yModel = numpy.linspace(min(y_data), max(y_data), 20)
    X, Y = numpy.meshgrid(xModel, yModel)

    Z = func(numpy.array([X, Y]), *fittedParameters)

    axes.plot(x_data, y_data, 'o')

    axes.set_title('Contour Plot') # add a title for contour plot
    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
    matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def ScatterPlot(data):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

    matplotlib.pyplot.grid(True)
    axes = Axes3D(f)
    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    axes.scatter(x_data, y_data, z_data)

    axes.set_title('Scatter Plot (click-drag with mouse)')
    axes.set_xlabel('X Data')
    axes.set_ylabel('Y Data')
    axes.set_zlabel('Z Data')

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def func(data, a, alpha, beta):
    t = data[0]
    p_p = data[1]
    return a * (t**alpha) * (p_p**beta)


if __name__ == "__main__":
    xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
    yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
    zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])

    data = [xData, yData, zData]

    initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example

    # here a non-linear surface fit is made with scipy's curve_fit()
    fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)

    ScatterPlot(data)
    SurfacePlot(func, data, fittedParameters)
    ContourPlot(func, data, fittedParameters)

    print('fitted prameters', fittedParameters)

    modelPredictions = func(data, *fittedParameters) 

    absError = modelPredictions - zData

    SE = numpy.square(absError) # squared errors
    MSE = numpy.mean(SE) # mean squared errors
    RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
    Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
    print('RMSE:', RMSE)
    print('R-squared:', Rsquared)
0 голосов
/ 05 октября 2018

Здесь приведен пример использования генетического алгоритма scipy diff_evolution для подгонки одного набора данных к двум различным перекрывающимся прямым линиям, а также для автоматического поиска точки останова для переключения с одной модели на другую.В реализации Scipy от дифференциальной эволюции используется алгоритм Latin Hypercube, чтобы обеспечить тщательный поиск пространства параметров, для которого требуются границы, в которых производится поиск - в этом примере эти границы взяты из значений max и min данных.В примере подгонка завершается вызовом curve_fit (), не пропуская границ, только в случае, если оптимальные параметры находятся за пределами границ, используемых для генетического алгоритма.dual.png

import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import warnings

xData = numpy.array([19.1647, 18.0189, 16.9550, 15.7683, 14.7044, 13.6269, 12.6040, 11.4309, 10.2987, 9.23465, 8.18440, 7.89789, 7.62498, 7.36571, 7.01106, 6.71094, 6.46548, 6.27436, 6.16543, 6.05569, 5.91904, 5.78247, 5.53661, 4.85425, 4.29468, 3.74888, 3.16206, 2.58882, 1.93371, 1.52426, 1.14211, 0.719035, 0.377708, 0.0226971, -0.223181, -0.537231, -0.878491, -1.27484, -1.45266, -1.57583, -1.61717])
yData = numpy.array([0.644557, 0.641059, 0.637555, 0.634059, 0.634135, 0.631825, 0.631899, 0.627209, 0.622516, 0.617818, 0.616103, 0.613736, 0.610175, 0.606613, 0.605445, 0.603676, 0.604887, 0.600127, 0.604909, 0.588207, 0.581056, 0.576292, 0.566761, 0.555472, 0.545367, 0.538842, 0.529336, 0.518635, 0.506747, 0.499018, 0.491885, 0.484754, 0.475230, 0.464514, 0.454387, 0.444861, 0.437128, 0.415076, 0.401363, 0.390034, 0.378698])


def func(xArray, breakpoint, slopeA, offsetA, slopeB, offsetB):
    returnArray = []
    for x in xArray:
        if x < breakpoint:
            returnArray.append(slopeA * x + offsetA)
        else:
            returnArray.append(slopeB * x + offsetB)
    return returnArray


# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
    warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
    val = func(xData, *parameterTuple)
    return numpy.sum((yData - val) ** 2.0)


def generate_Initial_Parameters():
    # min and max used for bounds
    maxX = max(xData)
    minX = min(xData)
    maxY = max(yData)
    minY = min(yData)
    slope = 10.0 * (maxY - minY) / (maxX - minX) # times 10 for safety margin

    parameterBounds = []
    parameterBounds.append([minX, maxX]) # search bounds for breakpoint
    parameterBounds.append([-slope, slope]) # search bounds for slopeA
    parameterBounds.append([minY, maxY]) # search bounds for offsetA
    parameterBounds.append([-slope, slope]) # search bounds for slopeB
    parameterBounds.append([minY, maxY]) # search bounds for offsetB


    result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
    return result.x

# by default, differential_evolution completes by calling curve_fit() using parameter bounds
geneticParameters = generate_Initial_Parameters()

fittedParameters, pcov = curve_fit(func, xData, yData, geneticParameters)
print('Parameters:', fittedParameters)
print()

modelPredictions = func(xData, *fittedParameters) 

absError = modelPredictions - yData

SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))

print()
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

print()


##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    # first the raw data as a scatter plot
    axes.plot(xData, yData,  'D')

    # create data for the fitted equation plot
    xModel = numpy.linspace(min(xData), max(xData))
    yModel = func(xModel, *fittedParameters)

    # now the model as a line plot
    axes.plot(xModel, yModel)

    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)
...