Я понимаю, что опорный уровень не включен, но я хотел бы получить возможность взять подобранный объект glm
и выяснить, какими были опорные уровни (то есть, не используя знания исходного набора данных).Хранится ли это где-нибудь в glm
приспособленном объекте?
Пример данных ниже:
> btest <- data.frame(var1 = sample(c(1,2,3), 100, replace = T),
+ var2 = sample(c('a','b','c'), 100, replace = T),
+ var3 = sample(c('e','f','g'), 100, replace = T),
+ var4 = rnorm(100, mean = 3, 2),
+ var5 = sample(c('yes','no'), 100, replace = T))
> summary(glm(var5 ~ var1 + var2 + var3 + var4, data = btest, family = 'binomial'))
Call:
glm(formula = var5 ~ var1 + var2 + var3 + var4, family = "binomial",
data = btest)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6988 -1.0457 -0.6213 1.1224 1.8904
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.81827 0.73173 -1.118 0.2635
var1 0.55923 0.27279 2.050 0.0404 *
var2b -0.60998 0.53435 -1.142 0.2536
var2c -0.60250 0.51706 -1.165 0.2439
var3f -0.81899 0.53345 -1.535 0.1247
var3g 0.21215 0.51907 0.409 0.6828
var4 0.04429 0.12650 0.350 0.7263
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 137.99 on 99 degrees of freedom
Residual deviance: 128.35 on 93 degrees of freedom
AIC: 142.35
Number of Fisher Scoring iterations: 4
Здесь я хотел бы знать, что var1
и var4
не имеют ссылки, но что контрольный уровень для var2
и var3
являются 'a'
и 'e'
соответственно.Потому что в конечном итоге я получу таблицу с NA
для Estimate
для этих переменных на этих эталонных уровнях.
Редактировать: Для людей, которые приходят позже, мне также интересно, в какой степени может помочь подключение к элементу terms
приспособленного glm
объекта в сочетании с ответом ниже ...
> btest2 <- glm(var5 ~ var1 + var3 + var2 + var4, data = btest, family = 'binomial')
> btest2$terms
var5 ~ var1 + var3 + var2 + var4
attr(,"variables")
list(var5, var1, var3, var2, var4)
attr(,"factors")
var1 var3 var2 var4
var5 0 0 0 0
var1 1 0 0 0
var3 0 1 0 0
var2 0 0 1 0
var4 0 0 0 1
attr(,"term.labels")
[1] "var1" "var3" "var2" "var4"
attr(,"order")
[1] 1 1 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
attr(,"predvars")
list(var5, var1, var3, var2, var4)
attr(,"dataClasses")
var5 var1 var3 var2 var4
"factor" "numeric" "factor" "factor" "numeric"
> attr(btest2$terms, 'dataClasses')
var5 var1 var3 var2 var4
"factor" "numeric" "factor" "factor" "numeric"