Поскольку ОП не показывает никаких данных, неясно, насколько шумны эти данные.Кроме того, не ясно, как здесь определяется «близко друг к другу».В следующем у меня есть простое приближение, которое работает с низким уровнем шума и предположением, что в данных левой части преобладает левый гауссов, а в правой части преобладает правый гауссов.Это дает некоторые ограничения на положение, высоту и особенно стандартное отклонение.
Это, безусловно, работает для одного пика, но вполне подходит для смешанных двойных пиков (в пределах вышеупомянутых ограничений)
#!/usr/bin/python
import matplotlib.pyplot as plt
import numpy as np
def gaussian( x, x0, s, a):
return a * np.exp( -( x - x0 )**2 / ( 2 * s**2 ) ) / np.sqrt( 2 * np.pi * s**2 )
def get_x0( x1, x2, x3, y1, y2, y3 ):
l12= np.log( y1 / y2 )
l13= np.log( y1 / y3 )
return ( ( x2 + x1 )/2. - ( x3 + x1 )/2. * l12/l13 * ( x3 - x1 ) / ( x2 - x1 ) ) / ( 1 - l12 / l13 * (x3 - x1 ) / ( x2 - x1 ) )
fig = plt.figure( )
ax = fig.add_subplot( 2, 1, 1 )
xL = np.linspace(-8, 8, 150 )
yL = np.fromiter( ( gaussian( x,-2.1, 1.2, 8 ) for x in xL ), np.float )
marker=[10,15,20]
x1 = xL[ marker[0] ]
x2 = xL[ marker[1] ]
x3 = xL[ marker[2] ]
y1 = yL[ marker[0] ]
y2 = yL[ marker[1] ]
y3 = yL[ marker[2] ]
print get_x0( x1, x2, x3, y1, y2, y3 )
ax.plot( xL, yL )
ax.scatter( [ x1, x2, x3 ],[ y1, y2, y3 ])
bx = fig.add_subplot( 2, 1, 2 )
yL = np.fromiter( ( gaussian( x,-2.1, 1.2, 8) + gaussian( x,0.7, 1.4, 6 ) for x in xL ), np.float )
marker=[10,15,20]
x1 = xL[ marker[0] ]
x2 = xL[ marker[1] ]
x3 = xL[ marker[2] ]
y1 = yL[ marker[0] ]
y2 = yL[ marker[1] ]
y3 = yL[ marker[2] ]
bx.scatter( [ x1, x2, x3 ],[ y1, y2, y3 ])
print get_x0( x1, x2, x3, y1, y2, y3 )
marker=[-20,-25,-30]
x1 = xL[ marker[0] ]
x2 = xL[ marker[1] ]
x3 = xL[ marker[2] ]
y1 = yL[ marker[0] ]
y2 = yL[ marker[1] ]
y3 = yL[ marker[2] ]
bx.scatter( [ x1, x2, x3 ],[ y1, y2, y3 ])
print get_x0( x1, x2, x3, y1, y2, y3 )
bx.plot( xL, yL )
plt.show()
Показывает:
#Single
-2.0999999999999455
#Double
-2.0951188129317813
0.6998760921436634
, что довольно близко к -2.1
и 0.7
В случае шумаможет потребоваться некоторое усреднение.