Мне нравится понимать различия в обозначениях ^ и exp () в моделях nls.В моем примере:
library(nls2)
#Data set
x <- c(1 ,10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
y <- c(0.033823, 0.014779, 0.004698, 0.001584, -0.002017, -0.003436,
-0.000006, -0.004626, -0.004626, -0.004626, -0.004626)
NLS с exp ()
fo2<- y ~ a4^(-x/a5)
fm2 <- nls2(fo2, alg = "plinear-random",
start = data.frame(a4 = c(-10, 10), a5 = c(-10, 10)),
control = nls.control(maxiter = 1000))
NLS с ^
fo3<- y ~ a4*exp(-x/a5)
fm3 <- nls2(fo3, alg = "plinear-random",
start = data.frame(a4 = c(-10, 10), a5 = c(-10, 10)),
control = nls.control(maxiter = 1000))
Результаты
summary(fm2)
Formula: y ~ a4^(-x/a5)
Parameters:
Estimate Std. Error t value Pr(>|t|)
a4 1.346e+00 3.060e+06 0.0 1
a5 2.890e+00 5.103e-03 566.4 <2e-16 ***
.lin 3.790e-02 2.211e+07 0.0 1
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.003675 on 8 degrees of freedom
Number of iterations to convergence: 1000
Achieved convergence tolerance: NA
summary(fm3)
Formula: y ~ a4 * exp(-x/a5)
Parameters:
Estimate Std. Error t value Pr(>|t|)
a4 5.456e+00 1.474e+09 0.000 1.00000
a5 9.764e+00 2.294e+00 4.256 0.00278 **
.lin 6.940e-03 1.875e+06 0.000 1.00000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.003675 on 8 degrees of freedom
Number of iterations to convergence: 1000
Achieved convergence tolerance: NA
Myвыводы были слишком неоднозначными.Любой член может просто объяснить о разных подходах?Спасибо,