Благодаря комментариям Кена Томаса, мне удалось найти решение.Он заставил меня понять, что это довольно просто:
Я использую структуру вершин, которая выглядит следующим образом:
// Metal side
struct Vertex {
float4 position;
float4 normal;
float4 color;
};
// Swift side
struct Vertex {
var position: float4
var normal: float4
var color: float4
}
Во время установки, где я обычно создаю буфер вершин, индексный буфер и рендерсостояние конвейера, теперь я также создаю состояние конвейерного вычисления:
// Vertex buffer
let dataSize = vertexData.count*MemoryLayout<Vertex>.stride
vertexBuffer = device.makeBuffer(bytes: vertexData, length: dataSize, options: [])!
// Index buffer
indexCount = indices.count
let indexSize = indexCount*MemoryLayout<UInt16>.stride
indexBuffer = device.makeBuffer(bytes: indices, length: indexSize, options: [])!
// Compute pipeline state
let adjustmentFunction = library.makeFunction(name: "adjustment_func")!
cps = try! device.makeComputePipelineState(function: adjustmentFunction)
// Render pipeline state
let rpld = MTLRenderPipelineDescriptor()
rpld.vertexFunction = library.makeFunction(name: "vertex_func")
rpld.fragmentFunction = library.makeFunction(name: "fragment_func")
rpld.colorAttachments[0].pixelFormat = .bgra8Unorm
rps = try! device.makeRenderPipelineState(descriptor: rpld)
commandQueue = device.makeCommandQueue()!
Тогда моя функция рендеринга выглядит так:
let black = MTLClearColor(red: 0, green: 0, blue: 0, alpha: 1)
rpd.colorAttachments[0].texture = drawable.texture
rpd.colorAttachments[0].clearColor = black
rpd.colorAttachments[0].loadAction = .clear
let commandBuffer = commandQueue.makeCommandBuffer()!
let computeCommandEncoder = commandBuffer.makeComputeCommandEncoder()!
computeCommandEncoder.setComputePipelineState(cps)
computeCommandEncoder.setBuffer(vertexBuffer, offset: 0, index: 0)
computeCommandEncoder.dispatchThreadgroups(MTLSize(width: meshSize*meshSize, height: 1, depth: 1), threadsPerThreadgroup: MTLSize(width: 4, height: 1, depth: 1))
computeCommandEncoder.endEncoding()
let renderCommandEncoder = commandBuffer.makeRenderCommandEncoder(descriptor: rpd)!
renderCommandEncoder.setRenderPipelineState(rps)
renderCommandEncoder.setFrontFacing(.counterClockwise)
renderCommandEncoder.setCullMode(.back)
updateUniforms(aspect: Float(size.width/size.height))
renderCommandEncoder.setVertexBuffer(vertexBuffer, offset: 0, index: 0)
renderCommandEncoder.setVertexBuffer(uniformBuffer, offset: 0, index: 1)
renderCommandEncoder.setFragmentBuffer(uniformBuffer, offset: 0, index: 1)
renderCommandEncoder.drawIndexedPrimitives(type: .triangle, indexCount: indexCount, indexType: .uint16, indexBuffer: indexBuffer, indexBufferOffset: 0)
renderCommandEncoder.endEncoding()
commandBuffer.present(drawable)
commandBuffer.commit()
Наконец, мой вычислительный шейдер выглядит так:
kernel void adjustment_func(const device Vertex *vertices [[buffer(0)]], uint2 gid [[thread_position_in_grid]]) {
vertices[gid.x].position = function(pos.xyz);
}
и это подпись моей вершинной функции:
vertex VertexOut vertex_func(const device Vertex *vertices [[buffer(0)]], uint i [[vertex_id]], constant Uniforms &uniforms [[buffer(1)]])