У меня есть простая модель керас.После того, как модель сохранена.Я не могу загрузить модель.Это ошибка, которую я получаю после создания экземпляра модели и попытки загрузки весов:
Using TensorFlow backend.
Traceback (most recent call last):
File "test.py", line 4, in <module>
model = load_model("test.h5")
File "/usr/lib/python3.7/site-packages/keras/engine/saving.py", line 419, in load_model
model = _deserialize_model(f, custom_objects, compile)
File "/usr/lib/python3.7/site-packages/keras/engine/saving.py", line 258, in _deserialize_model
.format(len(layer_names), len(filtered_layers))
ValueError: You are trying to load a weight file containing 6 layers into a model with 0 layers
Для создания экземпляра модели и использования model.load_weights и составления сводки модели.Я получаю None, когда печатаю модель, используя print (model)
Traceback (most recent call last):
File "test.py", line 7, in <module>
print(model.summary())
AttributeError: 'NoneType' object has no attribute 'summary'
Вот моя Сеть:
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, InputLayer, Flatten, Dense, BatchNormalization
def create_model():
kernel_size = 5
pool_size = 2
batchsize = 64
model = Sequential()
model.add(InputLayer((36, 120, 1)))
model.add(Conv2D(filters=20, kernel_size=kernel_size, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size))
model.add(Conv2D(filters=50, kernel_size=kernel_size, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size))
model.add(Flatten())
model.add(Dense(120, activation='relu'))
model.add(Dense(2, activation='relu'))
return model
Сценарий процедуры обучения:
import numpy as np
from keras import optimizers
from keras import losses
from sklearn.model_selection import train_test_split
from model import create_model
def data_loader(images, pos):
while(True):
for i in range(0, images.shape[0], 64):
if (i+64) < images.shape[0]:
img_batch = images[i:i+64]
pos_batch = pos[i:i+64]
yield img_batch, pos_batch
else:
img_batch = images[i:]
pos_batch = pos[i:]
yield img_batch, pos_batch
def main():
model = create_model()
sgd = optimizers.Adadelta(lr=0.01, rho=0.95, epsilon=None, decay=0.0)
model.compile(loss=losses.mean_squared_error, optimizer=sgd)
print("traning")
data = np.load("data.npz")
images = data['images']
pos = data['pos']
x_train, x_test, y_train, y_test = train_test_split(images, pos, test_size=0.33, random_state=42)
model.fit_generator(data_loader(x_train, y_train), steps_per_epoch=x_train.shape[0]//64, validation_data=data_loader(x_test, y_test), \
validation_steps = x_test.shape[0]//64, epochs=1)
model.save('test.h5')
model.save_weights('test_weights.h5')
print("training done")
if __name__ == '__main__':
main()