вот один из способов:
data = """
id col1 col2 col3
ID1 1 0 1
Id2 1 1 0
Id3 0 1 1
Id4 2 1 0
Id5 2 2 3
"""
#coding to create a sample DataFrame for testing
df = pd.read_csv(pd.compat.StringIO(data), sep='\s+')
print(df)
#end of creation
accuracy ={} #dict for result final
# i select all columns with name begins by 'col' and create a list
select_cols = [col for col in df.columns if col.startswith('col')]
for col in select_cols:
df1 = df.groupby(col).size()
t = [0,0,0,0] #[TP, FP, TN, FN] 0 = TP, 1 = FP, 2 = TN and 3 = FN
for v in df1.index:
t[v] = df1[v]
accuracy[col] = (t[0] + t[2])/(sum(t)) #Accuracy = (TP + TN)/(TP +TN + FP + FN
df_acc = pd.DataFrame.from_dict(accuracy, orient='index').T
print('Accuracy:');print(df_acc)
вывод:
Accuracy:
col1 col2 col3
0 0.6 0.4 0.4
Или другое решение (лучше, я думаю): вы заменяете 2 цикла for
for col in select_cols:
accuracy[col] = (df[df[col]==0].count()[0] + df[df[col]==2].count()[0]) / df[col].count()
df_acc = pd.DataFrame.from_dict(accuracy, orient='index' ).T.reset_index(drop=True)
print('Accuracy');print(df_acc)