Я пытаюсь построить сеть, но я получаю следующую ошибку
это код здания и обучения
Сеть была построена на следующем видео код
Данные, которые я создал, используя этот репозиторий githup-репозиторий
Поезд содержит 24 класса изображений, а тест содержит 24 класса меток
import os
import numpy as np
import lasagne
import theano
import theano.tensor as T
def load_mnist_images(filename):
with gzip.open(filename,'rb') as f :
data = np.frombuffer(f.read(),np.uint8,offset=16)
data = data.reshape(-1,1,28,28)
print(type(data))
return data/np.float32(256)
def load_mnist_labels(filename):
with gzip.open(filename,'rb')as f:
data=np.frombuffer(f.read(),np.uint8,offset=8)
return data
def load_dataset():
x_train = load_mnist_images('train-images-idx3-ubyte.gz')
y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
x_test = load_mnist_images('test-images-idx3-ubyte.gz')
y_test = load_mnist_labels('test-labels-idx1-ubyte.gz')
return x_train,y_train,x_test,y_test
def build_nn(input_var=None):
l_in = lasagne.layers.InputLayer(shape=(None,1,28,28),input_var=input_var)
l_in_drop = lasagne.layers.DropoutLayer(l_in,p=0.2)
l_hid1 = lasagne.layers.DenseLayer(l_in_drop,num_units=800,
nonlinearity=lasagne.nonlinearities.rectify,
W=lasagne.init.GlorotUniform())
l_hid1_drop = lasagne.layers.DropoutLayer(l_hid1,p=0.5)
l_hid2 = lasagne.layers.DenseLayer(l_hid1_drop, num_units=800,
nonlinearity=lasagne.nonlinearities.rectify,
W=lasagne.init.GlorotUniform())
l_hid2_drop = lasagne.layers.DropoutLayer(l_hid2, p=0.5)
l_out = lasagne.layers.DenseLayer(l_hid2_drop,num_units=24 ,
nonlinearity= lasagne.nonlinearities.softmax)
return l_out
if __name__ == "__main__":
x_train,y_train,x_test,y_test = load_dataset()
input_var = T.tensor4('inputs')
target_var = T.tensor4('targets')
print(target_var)
network = build_nn(input_var)
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction,target_var)
loss = loss.mean()
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.nesterov_momentum(loss,params,learning_rate=0.01 , momentum=0.9)
train_fn = theano.function([input_var,target_var],loss , updates=updates)
num_training_steps = 10
for steps in range(num_training_steps):
train_err = train_fn(x_train,y_train)
print("current step is " + str(steps))
и это ошибка, которую я получаю
Traceback (most recent call last):
File "/home/hassan/JPG-PNG-to-MNIST-NN-Format/mnist_test.py", line 64, in <module>
loss = lasagne.objectives.categorical_crossentropy(prediction,target_var)
File "/home/hassan/anaconda3/envs/object-detection/lib/python3.7/site-packages/lasagne/objectives.py", line 181, in categorical_crossentropy
return theano.tensor.nnet.categorical_crossentropy(predictions, targets)
File "/home/hassan/anaconda3/envs/object-detection/lib/python3.7/site-packages/theano/tensor/nnet/nnet.py", line 2101, in categorical_crossentropy
raise TypeError('rank mismatch between coding and true distributions')
TypeError: rank mismatch between coding and true distributions