Я попытался написать какой-нибудь псевдокод для случая вращающегося дис c, сталкивающегося со стеной. Надеюсь, это поможет:
# unit vector aligned with the wall
T = W2 - W1
T = T / norm(T)
# unit vector perpendicular to the wall, pointing towards the moving object and
# hence perpendicular to T
N = [- T[1], T[0]]
# initial position and velocity:
X1 = [X1[0], X1[1]]
V1 = [V1[0], V2[1]]
R1 = angular velocity, positive if counter-clock-wise, negative otherwise
t_start = start time of simulation
t_stop = end time of simulation
k = friction coefficient,
that determines how much angular momentum
is converted into linear momentum during collision
t_col = t_start + dot(N, W1 + r*N - X1) / dot(N, V1)
if t_col < t_stop{
V2 = V1 - 2*dot(v1, n)*n - k*r*R1*T
R2 = (1 - k)* R1
X_col = X1 + V1*(t_col - t_start)
X_stop = X_col + V2*(t_stop - t_col)
C = X_col - r*N
} else{
X_stop = X1 + V1*(t_stop - t_start)
}
Это версия python, я просто хотел убедиться, что ошибок не слишком много ...
import numpy as np
# unit vector aligned with the wall
W1 = np.array([ -1, 0])
W2 = np.array([10, 1])
T = W2 - W1
T = T / np.linalg.norm(T)
# unit vector perpendicular to the wall, pointing towards the moving object and
# hence perpendicular to T
N = np.array([- T[1], T[0]])
# initial position and velocity:
X1 = np.array([ 0, 5])
V1 = 0.3 * np.array([ 1, -2])
#angular velocity, positive if counter-clock-wise, negative otherwise
R1 = -1.2
t_start = 0 #start time of simulation
t_stop = 3 #end time of simulation
k = 0.7 #friction coefficient,
#that determines how much angular momentum
#is converted into linear momentum during collision
r = 0.5 # radius of the disc
# time of collision
t_col = t_start + np.dot(N, W1 + r*N - X1) / np.dot(N, V1)
t_start = 0 #start time of simulation
t_stop = 8 #end time of simulation
k = 0.7 #friction coefficient,
#that determines how much angular momentum
#is converted into linear momentum during collision
r = 0.5
t_col = t_start + np.dot(N, W1 + r*N - X1) / np.dot(N, V1)
if t_col < t_stop:
V2 = V1 - 2*np.dot(V1, N)*N - k*r*R1*T
R2 = (1 - k)* R1
X_col = X1 + V1*(t_col - t_start)
X_stop = X_col + V2*(t_stop - t_col)
C = X_col - r*N
else:
X_stop = X1 + V1*(t_stop - t_start)