Я пишу алгоритм классификации и использую 6 разных моделей. Я хочу улучшить модель, используя параметры тонкой настройки для каждой модели. Проблема, с которой я сталкиваюсь, связана с моим "для l oop" На самом деле, я l oop в трех разных словарях, но соответствие между моделью, которую я использую в gridsearch, и параметрами не сохраняется, так как словари не упорядочены;
Кажется, мне не удалось найти другое решение:
здесь мой код и результат, как вы можете видеть, model_name отличается от param_name, поэтому я получаю несколько ошибок, как например (ValueError: Invalid альфа-параметр для оценки LinearSV C (C = 1,0, class_weight = None, dual = True, fit_intercept = True,)
ниже кода
model1 = LinearSVC()
model2 = MultinomialNB()
model3 = LogisticRegression()
model4 = RandomForestClassifier()
model5 = KNeighborsClassifier()
model6 = MLPClassifier(max_iter=300, random_state=1)
models = {'Model_SVC': model1, 'Model_G_NB': model2, 'Model_LR': model3, 'Model_RF': model4, 'Model_KN': model5, 'Model_MLP': model6}
# list of parameters
parameter_RF = {'min_samples_split': [3, 5, 10],
'criterion': ['gini', 'entropy'],
'n_estimators' : [100, 300],
'max_features': ['auto', 'sqrt','log2'],
'bootstrap': ['True', 'False'],
'max_depth': [3, 5, 15, 25]
}
parameter_LinearSvc = {'C': [0.001, 0.01, 0.1, 1, 10, 100]
}
parameter_LR = {'C': [0.001, 0.01, 0.1, 1, 10, 100],
'penalty' : ['l1', 'l2'],
'solver' : ['liblinear', 'warn'],
'dual' : ['True','False'],
'max_iter' :[100, 110, 120, 130, 140]
}
parameter_NB = {'alpha': [1, 0.1, 0.01, 0.001, 0.0001, 0.00001]
'loss': ['hinge', 'hinge_squarred'],
'penalty' : ['l1', 'l2']
}
k_range = list(range(1, 31))
weight_options = ['uniform', 'distance']
parameter_KNN = dict(n_neighbors=k_range, weights=weight_options)
parameter_MLP = { 'hidden_layer_sizes': [(50,50,50), (50,100,50), (100,)],
'activation': ['tanh', 'relu'],
'solver': ['sgd', 'adam'],
'alpha': [0.0001, 0.05],
'learning_rate': ['constant','adaptive'],
'max_iter' : [100, 200, 300]
}
parameters_dict = {'Model_SVC': parameter_LinearSvc, 'Model_G_NB': parameter_NB, 'Model_LR': parameter_LR, 'Model_RF': parameter_LR, 'Model_KN': parameter_KNN, 'Model_MLP': parameter_MLP}
cv_splitter = KFold(n_splits=10, shuffle=False, random_state=None)
for feature_name, feature in features.items():
for model_name, model in models.items():
for param_name, parameter in parameters_dict.items():
clf = GridSearchCV(estimator=model, param_grid=parameter, cv=cv_splitter, verbose = 1, n_jobs = -1, return_train_score=True)
best_model = clf.fit(feature, ylabels)
вывод: как вы можете видеть иногда это работает, но в других случаях параметр и модель не совпадают, что приводит к ошибке
[5 rows x 7 columns]
Feature: vecteur_CV
Model: Model_SVC
Param: Model_SVC
Fitting 10 folds for each of 6 candidates, totalling 60 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 32 concurrent workers.
[Parallel(n_jobs=-1)]: Done 58 out of 60 | elapsed: 2.8s remaining: 0.1s
/svm/base.py:929: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
"the number of iterations.", ConvergenceWarning)
[Parallel(n_jobs=-1)]: Done 60 out of 60 | elapsed: 2.8s finished
Feature: vecteur_CV
Model: Model_SVC
Param: Model_G_NB
Fitting 10 folds for each of 24 candidates, totalling 240 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 32 concurrent workers.
joblib.externals.loky.process_executor._RemoteTraceback:
"""
Traceback (most recent call last):
File "/ho/anaconda3/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py", line 418, in _process_worker
r = call_item()
File "/ho/anaconda3/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py", line 272, in __call__
return self.fn(*self.args, **self.kwargs)
File "/ho/anaconda3/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 567, in __call__
return self.func(*args, **kwargs)
File "/ho/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 225, in __call__
for func, args, kwargs in self.items]
File "/ho/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 225, in <listcomp>
for func, args, kwargs in self.items]
File "/home/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 503, in _fit_and_score
estimator.set_params(**parameters)
File "/home/anaconda3/lib/python3.7/site-packages/sklearn/base.py", line 224, in set_params
(key, self))
ValueError: Invalid parameter alpha for estimator LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
Функции выглядят следующим образом
`X_data, X_data_0, X_data_1, X_data_2 = features_fusion(verbatim, first_arg)
features = {'vecteur_CV': X_data, 'vecteur_NEG': X_data_0, 'Vecteur_NEG_lexique': X_data_1, 'Vecteur_NEG_CV': X_data_2}