У меня есть вложенная модель, которая имеет входной слой и имеет несколько окончательных плотных слоев перед выводом. Вот код для этого:
image_input = Input(shape, name='image_input')
x = DenseNet121(input_shape=shape, include_top=False, weights=None,backend=keras.backend,
layers=keras.layers,
models=keras.models,
utils=keras.utils)(image_input)
x = GlobalAveragePooling2D(name='avg_pool')(x)
x = Dense(1024, activation='relu', name='dense_layer1_image')(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu', name='dense_layer2_image')(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
output = Dense(num_class, activation='softmax', name='image_output')(x)
classificationModel = Model(inputs=[image_input], outputs=[output])
Теперь Если, скажем, я хотел извлечь веса плотных сетей из этой модели и выполнить обучение переносу на другую более крупную модель, которая также имеет ту же модель плотности enet, вложенную, но также имеет некоторые другие слои после плотного net, такие как:
image_input = Input(shape, name='image_input')
x = DenseNet121(input_shape=shape, include_top=False, weights=None,backend=keras.backend,
layers=keras.layers,
models=keras.models,
utils=keras.utils)(image_input)
x = GlobalAveragePooling2D(name='avg_pool')(x)
x = Dense(1024, activation='relu', name='dense_layer1_image')(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu', name='dense_layer2_image')(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
x = Dense(256, activation='relu', name='dense_layer3_image')(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
output = Dense(num_class, activation='sigmoid', name='image_output')(x)
classificationModel = Model(inputs=[image_input], outputs=[output])
Нужно ли мне просто сделать: modelB.load_weights(<weights.hdf5>, by_name=True)
? Также я должен назвать внутренние логова enet? и если да, то как?