Хорошо, так что это метод, который я придумал. Если у кого-то есть более эффективный или элегантный подход, пожалуйста, поделитесь.
import numpy as np
import pandas as pd
# Create the example Pandas Time Series
data = [2,2,2,1,2,np.nan,np.nan,1,3,3,1,1,np.nan,2,1,np.nan,3,3,3,2,3,np.nan,3,1,2,1,3,3,1,np.nan,1,1,2,1,3,1,2,np.nan,2,1]
dt = pd.date_range(start='1/1/2020', freq='S', periods=40)
s = pd.Series(data=data, index=dt)
# Drop NAN and calculate the state changes (not changing states returns 0)
s_diff = s.dropna().diff()
# Since 0 means no state change, remove them
s_diff = s_diff.replace(0,np.nan).dropna()
# Create a series that start with the time serie's initial condition, and then just the state change differences between the next states.
s_diff = pd.concat([s[:1], s_diff])
# We can now to a cumulative sum that starts on the initial value and adds the changes to find the actual states
s_states = s_diff.cumsum().astype(int)
# If the signal does not change in during the last timestamp, we need to ensure that we still get it.
s_states[s.index[-1]] = int(s[-1])
# Extract pairs of (start, end) timestamps for defining the timeslots. The .strftime method is only applied for readability. The following would probably be more useful:
# [(s_states.index[i], s_states.index[i+1] for i in range(len(s_states)-1)]
[(s_states.index[i].strftime('%M:%S'), s_states.index[i+1].strftime('%M:%S')) for i in range(len(s_states)-1)]
Out:
[('00:00', '00:03'),
('00:03', '00:04'),
('00:04', '00:07'),
('00:07', '00:08'),
('00:08', '00:10'),
('00:10', '00:13'),
('00:13', '00:14'),
('00:14', '00:16'),
('00:16', '00:19'),
('00:19', '00:20'),
('00:20', '00:23'),
('00:23', '00:24'),
('00:24', '00:25'),
('00:25', '00:26'),
('00:26', '00:28'),
('00:28', '00:32'),
('00:32', '00:33'),
('00:33', '00:34'),
('00:34', '00:35'),
('00:35', '00:36'),
('00:36', '00:39')]