Я пытаюсь преобразовать матрицу путаницы в список python 2D, чтобы я мог получить доступ к компонентам.
Я получаю сообщение об ошибке при попытке преобразовать матрицу путаницы во фрейм данных.
import h2o
from h2o.estimators.gbm import H2OGradientBoostingEstimator
import pandas as pd
h2o.init()
training_file = "AirlinesTrain.csv"
train = h2o.import_file(training_file)
response_col = "IsDepDelayed"
distribution = "multinomial"
project_name = "airlines"
problem_type = "binary-classification"
predictors = train.columns
gbm = H2OGradientBoostingEstimator(nfolds=3,
distribution=distribution)
gbm.train(x=predictors,
y=response_col,
training_frame=train)
print("gbm.confusion_matrix(train).as_data_frame()")
print(gbm.confusion_matrix(train).as_data_frame())#This errors AttributeError: 'H2OFrame' object has no attribute 'lower'
ПРИМЕЧАНИЕ: если я использую набор данных автомобилей, ошибок не будет:
cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv")
cars["cylinders"] = cars["cylinders"].asfactor()
#r = cars[0].runif()
#train = cars[r > .2]
#valid = cars[r <= .2]
train=cars
response_col = "cylinders"
distribution = "multinomial"
predictors = ["displacement","power","weight","acceleration","year"]