Я решал символьную c функцию
x = Symbol('x')
a = Symbol('a')
b = Symbol('b')
c = Symbol('c')
func = a * x ** 4 - x ** 3 /b + c
solve(func, x, dict=True)
, но результаты - это длинная серия сценариев LaTeX, а не рендеринг в читаемые математические уравнения. Это не то, как Jupyter обычно обрабатывает LaTeX, какие-нибудь решения для этого? Спасибо!
\displaystyle \left[ \left\{ x : \begin{cases} - \frac{\sqrt{- 2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{4 a^{2} b^{2}}}}{2} - \frac{\sqrt{2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{2 a^{2} b^{2}} - \frac{1}{4 a^{3} b^{3} \sqrt{- 2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{4 a^{2} b^{2}}}}}}{2} + \frac{1}{4 a b} & \text{for}\: \frac{c}{a} = 0 \\- \frac{\sqrt{2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} + \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{4 a^{2} b^{2}}}}{2} - \frac{\sqrt{- 2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} - \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{2 a^{2} b^{2}} - \frac{1}{4 a^{3} b^{3} \sqrt{2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} + \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{4 a^{2} b^{2}}}}}}{2} + \frac{1}{4 a b} & \text{otherwise} \end{cases}\right\}, \ \left\{ x : \begin{cases} - \frac{\sqrt{- 2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{4 a^{2} b^{2}}}}{2} + \frac{\sqrt{2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{2 a^{2} b^{2}} - \frac{1}{4 a^{3} b^{3} \sqrt{- 2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{4 a^{2} b^{2}}}}}}{2} + \frac{1}{4 a b} & \text{for}\: \frac{c}{a} = 0 \\- \frac{\sqrt{2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} + \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{4 a^{2} b^{2}}}}{2} + \frac{\sqrt{- 2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} - \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{2 a^{2} b^{2}} - \frac{1}{4 a^{3} b^{3} \sqrt{2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} + \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{4 a^{2} b^{2}}}}}}{2} + \frac{1}{4 a b} & \text{otherwise} \end{cases}\right\}, \ \left\{ x : \begin{cases} \frac{\sqrt{- 2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{4 a^{2} b^{2}}}}{2} - \frac{\sqrt{2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{2 a^{2} b^{2}} + \frac{1}{4 a^{3} b^{3} \sqrt{- 2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{4 a^{2} b^{2}}}}}}{2} + \frac{1}{4 a b} & \text{for}\: \frac{c}{a} = 0 \\\frac{\sqrt{2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} + \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{4 a^{2} b^{2}}}}{2} - \frac{\sqrt{- 2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} - \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{2 a^{2} b^{2}} + \frac{1}{4 a^{3} b^{3} \sqrt{2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} + \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{4 a^{2} b^{2}}}}}}{2} + \frac{1}{4 a b} & \text{otherwise} \end{cases}\right\}, \ \left\{ x : \begin{cases} \frac{\sqrt{- 2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{4 a^{2} b^{2}}}}{2} + \frac{\sqrt{2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{2 a^{2} b^{2}} + \frac{1}{4 a^{3} b^{3} \sqrt{- 2 \sqrt[3]{- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}} + \frac{1}{4 a^{2} b^{2}}}}}}{2} + \frac{1}{4 a b} & \text{for}\: \frac{c}{a} = 0 \\\frac{\sqrt{2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} + \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{4 a^{2} b^{2}}}}{2} + \frac{\sqrt{- 2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} - \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{2 a^{2} b^{2}} + \frac{1}{4 a^{3} b^{3} \sqrt{2 \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}} + \frac{2 c}{3 a \sqrt[3]{\sqrt{\frac{\left(- \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{8 a^{2} b^{2}} - \frac{3}{2048 a^{6} b^{6}}\right)^{2}}{4} - \frac{c^{3}}{27 a^{3}}} + \frac{\frac{c}{a} - \frac{3}{256 a^{4} b^{4}}}{16 a^{2} b^{2}} + \frac{3}{4096 a^{6} b^{6}}}} + \frac{1}{4 a^{2} b^{2}}}}}}{2} + \frac{1}{4 a b} & \text{otherwise} \end{cases}\right\}\right]