Мышь pool.compare выдает «Ошибка: нет взгляда на метод вызова классов» для моделей lmerTest - PullRequest
0 голосов
/ 16 января 2020

Я пытаюсь сравнить две модели, построенные с использованием нескольких вменений. Когда я пытаюсь сравнить модели, мышей pool.compare () выдает ошибку «Ошибка: нет метода взгляда для объектов вызова класса» или «Ошибка»: неравное число импутаций для «fit1» и «fit0», даже если я использую тот же вмененный набор данных. Вот воспроизводимый пример:

library(mice)
library(miceadds)
library(lmerTest)

imp <- mice(nhanes, maxit = 2, m = 4)

summary(m0 <- pool(with(imp, lmerTest::lmer(bmi ~ 1 + (1 | chl)))))

summary(m1 <- pool(with(imp, lmerTest::lmer(bmi ~ 1 + hyp + (1 | chl)))))

pool.compare(m0, m1)

Error: No glance method for objects of class call

1 Ответ

1 голос
/ 16 января 2020

Вам необходимо сравнить объекты перед pool ing. И порядок имеет значение, m1> m0. (Примечание: я использовал lme4 здесь.)

library(mice)
library(miceadds)

set.seed(42)
imp <- mice(nhanes, maxit = 2, m = 4)

summary(pool(m0 <- with(imp, lme4::lmer(bmi ~ 1 + (1 | chl)))))
# boundary (singular) fit: see ?isSingular
# estimate std.error statistic       df      p.value
# (Intercept) 26.60791 0.9722573  27.36715 18.24326 4.440892e-16
summary(pool(m1 <- with(imp, lme4::lmer(bmi ~ 1 + hyp + (1 | chl)))))
# boundary (singular) fit: see ?isSingular
# estimate std.error  statistic       df      p.value
# (Intercept) 27.2308286  3.759095  7.2439857 5.181367 0.0006723643
# hyp         -0.5310514  2.746281 -0.1933711 4.928222 0.8543848658

pool.compare(m1, m0)
# $call
# pool.compare(fit1 = m1, fit0 = m0)
# 
# $call11
# with.mids(data = imp, expr = lme4::lmer(bmi ~ 1 + hyp + (1 | 
#                                                            chl)))
# 
# $call12
# mice(data = nhanes, m = 4, maxit = 2)
# 
# $call01
# with.mids(data = imp, expr = lme4::lmer(bmi ~ 1 + (1 | chl)))
# 
# $call02
# mice(data = nhanes, m = 4, maxit = 2)
# 
# $method
# [1] "wald"
# 
# $nmis
# age bmi hyp chl 
# 0   9   8  10 
# 
# $m
# [1] 4
# 
# $qbar1
# (Intercept)         hyp 
# 27.2308286  -0.5310514 
# 
# $qbar0
# (Intercept) 
# 26.60791 
# 
# $ubar1
# [1] 6.916910 3.560812
# 
# $ubar0
# [1] 0.8786098
# 
# $deviances
# NULL
# 
# $Dm
# [,1]
# [1,] 0.03739239
# 
# $rm
# [1] 1.118073
# 
# $df1
# [1] 1
# 
# $df2
# [1] 10.76621
# 
# $pvalue
# [,1]
# [1,] 0.850268
...