Как сравнить модель lmer с моделью lm, если ML подходит для модели lmer? - PullRequest
0 голосов
/ 27 марта 2020

У меня высоко параметризованная модель, подходящая для одного случайного эффекта. Я хотел бы сравнить его соответствие (с lmer) с фиксированной моделью (с lm). Если я не ошибаюсь, мне нужно заменить модель Lmer на REML = FALSE. Это дает мне подгонку ML, вероятность которой (и, следовательно, AI C) сравнима с вероятностью lm.
Однако, когда я пытаюсь подобрать эту модель с ML, результат является единственным. Я понимаю, что это не странно, учитывая высокую параметризацию моей модели, но я не знаю, как действовать в этом случае.
Ниже я приведу воспроизводимый пример того, что я сделал. Любая подсказка или направление для поиска будут полезны.
Большое спасибо.
Asier

y<- c(0.26, 0.0972, 0.0844444444444444, 7.915, 2.01857142857143, 4.36166666666667, 2.111,
      0.5725, 0.1615, 5.0015, 1.01833333333333, 0.114, 0.054, 0.59, 0.958, 2.01, 0.102,
      3.26844444444444, 1.295, 3.84666666666667, 0.126428571428571, 0.525, 3.627875,
      2.63285714285714, 0.0516666666666667, 4.35444444444444, 3.562, 4.396, 1.07,
      2.21333333333333, 0.13, 0.14575, 3.4425, 6.588, 2.1545, 1.49833333333333, 3.717,
      3.59833333333333, 0.047, 1.46366666666667, 0.981428571428571, 4.188, 3.33428571428571,
      0.0892727272727273, 1.997, 0, 0.977777777777778, 2.779, 0.816636363636364, 1.5575,
      0.10125, 0.854, 1.34025, 0.056, 3.20714285714286, 8.078, 0.375555555555556, 
      0.0813333333333333, 0, 2.506, 4.08, 0.053, 0.073, 0, 1.11233333333333, 2.39433333333333,
      0.30625, 5.23025, 0.21, 0.806166666666667, 5.342, 5.673375, 0.329, 1.265,
      1.36288888888889, 5.2264, 0.127, 1.01, 1.8325, 1.924, 3.3206, 3.2375, 3.6725,
      0.193111111111111, 2.893, 1.71, 3.47277777777778, 4.08575, 7.04818181818182, 0.686,
      0.124, 5.5065, 0.2178, 0, 0, 9.8975, 0.16375, 6.03166666666667, 0, 3.775,
      2.30333333333333, 0.717142857142857, 0.23425, 0)
id <- c(1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 12, 12, 13, 13, 14,
        14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 21, 22,
        22, 23, 23, 23, 24, 24, 24, 24, 25, 25, 26, 27, 27, 27, 28, 28, 28, 28, 29, 29, 30,
        31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 37, 37, 38,
        38, 38, 39, 39, 40, 41, 41, 41, 42, 43, 43, 44, 44, 45)
G <- c("Gen2062","Gen2062","Gen1043","Gen1043","Gen2062","Gen2062","Gen2062","Gen2062",
       "Gen2062","Gen1002", "Gen1002","Gen1002","Gen1043","Gen1043","Gen2062","Gen2062",
       "Gen1002","Gen1002","Gen1002","Gen1043", "Gen1043","Gen1043","Gen1002","Gen1002",
       "Gen1043","Gen1043","Gen1002","Gen1002","Gen1002","Gen2062", "Gen2062","Gen2062",
       "Gen2062","Gen2062","Gen2062","Gen1002","Gen1002","Gen1002","Gen2062","Gen2062", 
       "Gen2062","Gen1043","Gen1043","Gen1043","Gen1043","Gen1002","Gen1043","Gen2062",
       "Gen2062","Gen1043", "Gen1043","Gen1043","Gen2062","Gen2062","Gen2062","Gen2062",
       "Gen2062","Gen2062","Gen1002","Gen1043", "Gen1043","Gen1043","Gen1002","Gen1002",
       "Gen1002","Gen1002","Gen1002","Gen1002","Gen1043","Gen1043", "Gen1043","Gen1043",
       "Gen2062","Gen2062","Gen2062","Gen2062","Gen1002","Gen1002","Gen1002","Gen1002", 
       "Gen1002","Gen1002","Gen1002","Gen2062","Gen2062","Gen2062","Gen1002","Gen1043",
       "Gen1043","Gen2062", "Gen2062","Gen2062","Gen2062","Gen2062","Gen1002","Gen2062",
       "Gen2062","Gen2062","Gen1002","Gen1043", "Gen1043","Gen1043","Gen1043","Gen1043")
treat <- factor(c("CLIP","CLIP","MWh","MWh","CTRL","CTRL","MJ","MJ","MJ","MWl","MWl","MWl",
          "CLIP","CLIP", "MWh","MWh","CTRL","CTRL","CTRL","MJ","MJ","MWl","MWh","MWh","CTRL",
          "CTRL","MJ","MJ", "MJ","MWl","MWl","MJ","MJ","MJ","MJ","CTRL","CTRL","CTRL","MWl",
          "MWl","MWl","MWh", "MWh","MWh","MWh","CLIP","MJ","CTRL","CTRL","MWl","MWl","MWl",
          "MWh","MWh","MWh","MWh", "CLIP","CLIP","MJ","CTRL","CTRL","CTRL","MWl","MWl","MWl",
          "MWl","MWh","MWh","CLIP","MWh", "MWh","MWh","MWl","MWl","MWl","MWl","MJ","MJ","MJ",
          "MJ","CLIP","CLIP","CLIP","CTRL", "CTRL","CTRL","MWh","MWl","MWl","MJ","MJ","MJ",
          "CLIP","CLIP","CTRL","MWh","MWh","MWh", "MWl","MJ","MJ","CLIP","CLIP","CTRL"),
          levels= c("CTRL","MJ","CLIP","MWl","MWh"))
year <- factor(c(3, 6, 3, 4, 3, 4, 4, 3, 6, 5, 3, 6, 6, 3, 5, 3, 6, 5, 3, 3, 6, 3, 5, 3, 6, 3,
                 5, 6, 3, 3, 6, 6, 3, 4, 5, 3, 4, 5, 6, 5, 3, 4, 3, 6, 5, 3, 3, 5, 6, 5, 6, 3,
                 5, 6, 3, 4, 3, 6, 3, 3, 5, 6, 6, 3, 5, 4, 3, 5, 3, 6, 5, 4, 6, 3, 5, 4, 6, 3,
                 5, 4, 5, 3, 4, 6, 4, 3, 5, 5, 4, 3, 6, 4, 6, 3, 3, 3, 6, 4, 3, 5, 3, 3, 6, 3))
yearsc <- c(-1.07978316353608, 1.3728671650673, -1.07978316353608, -0.262233054001619,
            -1.07978316353608, -0.262233054001619, -0.262233054001619, -1.07978316353608,
            1.3728671650673, 0.555317055532841, -1.07978316353608, 1.3728671650673,
            1.3728671650673, -1.07978316353608, 0.555317055532841, -1.07978316353608,
            1.3728671650673, 0.555317055532841, -1.07978316353608, -1.07978316353608,
            1.3728671650673, -1.07978316353608, 0.555317055532841, -1.07978316353608,
            1.3728671650673, -1.07978316353608, 0.555317055532841, 1.3728671650673,
            -1.07978316353608, -1.07978316353608, 1.3728671650673, 1.3728671650673,
            -1.07978316353608, -0.262233054001619, 0.555317055532841, -1.07978316353608,
            -0.262233054001619, 0.555317055532841, 1.3728671650673, 0.555317055532841, 
            -1.07978316353608, -0.262233054001619, -1.07978316353608, 1.3728671650673,
            0.555317055532841, -1.07978316353608, -1.07978316353608, 0.555317055532841,
            1.3728671650673, 0.555317055532841, 1.3728671650673, -1.07978316353608,
            0.555317055532841, 1.3728671650673, -1.07978316353608, -0.262233054001619,
            -1.07978316353608, 1.3728671650673, -1.07978316353608, -1.07978316353608,
            0.555317055532841, 1.3728671650673, 1.3728671650673, -1.07978316353608,
            0.555317055532841, -0.262233054001619, -1.07978316353608, 0.555317055532841,
            -1.07978316353608, 1.3728671650673, 0.555317055532841, -0.262233054001619,
            1.3728671650673, -1.07978316353608, 0.555317055532841, -0.262233054001619,
            1.3728671650673, -1.07978316353608, 0.555317055532841, -0.262233054001619,
            0.555317055532841, -1.07978316353608, -0.262233054001619, 1.3728671650673,
            -0.262233054001619, -1.07978316353608, 0.555317055532841, 0.555317055532841,
            -0.262233054001619, -1.07978316353608, 1.3728671650673, -0.262233054001619,
            1.3728671650673, -1.07978316353608, -1.07978316353608, -1.07978316353608,
            1.3728671650673, -0.262233054001619, -1.07978316353608, 0.555317055532841,
            -1.07978316353608, -1.07978316353608, 1.3728671650673, -1.07978316353608)
size <- c(-0.787432564310817, -0.152782818327027, -0.699224001486484, -0.550015536772591,
          -0.781582651675141, -0.610089505479677, -0.577270197592965, -0.741751305963175,
          0.356078702136875, -0.13601511806665, -0.638026310946081, 0.471603198642645,
          1.15814515868844, -0.789767139940315, -0.0493058764568589, -0.830867368236643,
          0.282001152184494, 0.0005151484178005, -0.706132205926861, -0.758959877669081,
          0.635067465847522, -0.639996726846006, 0.338851364938649, -0.687759226677031,
          1.50611203577326, -0.617838405181706, -0.431216398523762, -0.095943463138333,
          -0.828615165337114, -0.894932740870706, -0.190534573435163, 2.09068336019719,
          -0.728105080373099, -0.428488978079942, 0.371238758871314, -0.795793311954492,
          -0.534287991283384, -0.121219875531701, 1.58721804976744, 0.336882526401706,
          -0.704783835032158, -0.288243542229793, -0.599717273194699, 2.3037811783131,
          0.628369071795738, -0.931816759347182, -0.68268847216755, -0.395481979078294,
          -0.0979933714973827, 1.32533791387265, 3.1571568700452, -0.404143493349221,
          0.590877174420973, 1.81784576923909, -0.703980791394687, -0.416364696648416,
          -0.768567091923648, 0.23505593448162, -0.939399200506726, -0.617601830894264,
          0.63681119086057, 2.55610810427755, 3.8807918928945, -0.469139992701266,
          1.20366369228973, -0.000593770934626139, -0.634399579467078, 0.689872113268812,
          -0.808520055565538, 2.23682619130318, 0.390822911612295, -0.394403171374082,
          2.39599810096244, -0.500738681014898, 0.806525796582534, -0.203580589790564,
          1.86137157765943, -0.735217373868222, 0.398014962973706, -0.437491202755023,
          -0.517043281980417, -0.819560480524912, -0.793550730064359, 0.0959488057944091,
          -0.852469670957697, -0.927580574622887, -0.327342793595416, 0.520510016505482,
          -0.182641774798893, -0.653124769092475, 1.61024043157109, -0.420258943460452,
          -0.430386880522537, -0.871015659481176, -0.883994250355051, -0.82909061812865,
          0.731026629392447, -0.721724460118443, -0.815520300277671, 0.115266586262742,
          -0.632005356595319, -0.771733007212575, 0.453258256039623, -0.7880133716792)

my.df2<- data.frame(y, id, G, treat, year, yearsc, size)
contrasts(my.df2$treat) <- contr.treatment
contrasts(my.df2$G) <- contr.sum
contrasts(my.df2$year)<- contr.treatment

library("lme4")
#> Loading required package: Matrix

mod1 <- lmer(y~treat*G + year + year:treat +size +(1|id), my.df2)
summary(mod1)
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: y ~ treat * G + year + year:treat + size + (1 | id)
#>    Data: my.df2
#> 
#> REML criterion at convergence: 330.3
#> 
#> Scaled residuals: 
#>     Min      1Q  Median      3Q     Max 
#> -1.7475 -0.4820 -0.0221  0.2716  4.1059 
#> 
#> Random effects:
#>  Groups   Name        Variance Std.Dev.
#>  id       (Intercept) 0.06866  0.262   
#>  Residual             2.43441  1.560   
#> Number of obs: 104, groups:  id, 44
#> 
#> Fixed effects:
#>              Estimate Std. Error t value
#> (Intercept)   1.32960    0.62538   2.126
#> treat2       -0.09680    0.77170  -0.125
#> treat3       -0.89724    0.80078  -1.120
#> treat4       -0.66361    0.79923  -0.830
#> treat5        1.41161    0.82483   1.711
#> G1           -0.42156    0.51853  -0.813
#> G2            0.58878    0.57904   1.017
#> year2         2.28864    1.13245   2.021
#> year3         2.20964    1.01149   2.185
#> year4        -0.81387    1.06034  -0.768
#> size         -0.41995    0.33247  -1.263
#> treat2:G1     0.05079    0.71043   0.071
#> treat3:G1     1.24021    1.00465   1.234
#> treat4:G1     0.03188    0.70573   0.045
#> treat5:G1     0.34787    0.79340   0.438
#> treat2:G2    -0.10445    0.81277  -0.129
#> treat3:G2    -0.82656    0.85744  -0.964
#> treat4:G2    -0.06169    0.75898  -0.081
#> treat5:G2    -0.78486    0.75113  -1.045
#> treat2:year2  0.51063    1.50463   0.339
#> treat3:year2 -0.24544    2.22703  -0.110
#> treat4:year2  1.87065    1.54810   1.208
#> treat5:year2  1.13673    1.47973   0.768
#> treat2:year3 -0.50833    1.35564  -0.375
#> treat3:year3 -0.40223    2.15699  -0.186
#> treat4:year3 -0.16616    1.29332  -0.128
#> treat5:year3 -1.65140    1.28763  -1.283
#> treat2:year4  0.97226    1.23395   0.788
#> treat3:year4  1.06639    1.32601   0.804
#> treat4:year4  1.18690    1.27731   0.929
#> treat5:year4 -0.97460    1.38438  -0.704
#> 
#> Correlation matrix not shown by default, as p = 31 > 12.
#> Use print(x, correlation=TRUE)  or
#>     vcov(x)        if you need it

mod2 <- lm(y~treat*G + year + year:treat +size, my.df2)
summary(mod2)
#> 
#> Call:
#> lm(formula = y ~ treat * G + year + year:treat + size, data = my.df2)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -2.7330 -0.7436 -0.0521  0.4474  6.5494 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)  
#> (Intercept)   1.30986    0.62317   2.102   0.0390 *
#> treat2       -0.09464    0.76991  -0.123   0.9025  
#> treat3       -0.89698    0.79892  -1.123   0.2652  
#> treat4       -0.66726    0.79755  -0.837   0.4055  
#> treat5        1.40364    0.82312   1.705   0.0924 .
#> G1           -0.42105    0.50724  -0.830   0.4092  
#> G2            0.61061    0.56940   1.072   0.2871  
#> year2         2.31885    1.14117   2.032   0.0458 *
#> year3         2.24022    1.01549   2.206   0.0305 *
#> year4        -0.76560    1.06268  -0.720   0.4736  
#> size         -0.44355    0.32974  -1.345   0.1827  
#> treat2:G1     0.03985    0.69321   0.057   0.9543  
#> treat3:G1     1.23850    0.99694   1.242   0.2181  
#> treat4:G1     0.03143    0.68797   0.046   0.9637  
#> treat5:G1     0.36039    0.78027   0.462   0.6455  
#> treat2:G2    -0.13073    0.80002  -0.163   0.8707  
#> treat3:G2    -0.84184    0.84639  -0.995   0.3232  
#> treat4:G2    -0.07929    0.74368  -0.107   0.9154  
#> treat5:G2    -0.81681    0.73590  -1.110   0.2707  
#> treat2:year2  0.46098    1.51702   0.304   0.7621  
#> treat3:year2 -0.22867    2.24265  -0.102   0.9191  
#> treat4:year2  1.87100    1.55630   1.202   0.2332  
#> treat5:year2  1.15153    1.49203   0.772   0.4427  
#> treat2:year3 -0.47888    1.36376  -0.351   0.7265  
#> treat3:year3 -0.37929    2.17060  -0.175   0.8618  
#> treat4:year3 -0.15231    1.30132  -0.117   0.9071  
#> treat5:year3 -1.66341    1.29562  -1.284   0.2032  
#> treat2:year4  0.97095    1.24366   0.781   0.4375  
#> treat3:year4  1.04592    1.33667   0.782   0.4365  
#> treat4:year4  1.20306    1.28681   0.935   0.3529  
#> treat5:year4 -0.91330    1.39371  -0.655   0.5143  
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 1.578 on 73 degrees of freedom
#> Multiple R-squared:  0.6184, Adjusted R-squared:  0.4616 
#> F-statistic: 3.943 on 30 and 73 DF,  p-value: 9.092e-07

mod2_ML <- update(mod1, REML=FALSE)
#> boundary (singular) fit: see ?isSingular
summary(mod2_ML)
#> Linear mixed model fit by maximum likelihood  ['lmerMod']
#> Formula: y ~ treat * G + year + year:treat + size + (1 | id)
#>    Data: my.df2
#> 
#>      AIC      BIC   logLik deviance df.resid 
#>    419.2    506.5   -176.6    353.2       71 
#> 
#> Scaled residuals: 
#>     Min      1Q  Median      3Q     Max 
#> -2.0672 -0.5625 -0.0394  0.3384  4.9539 
#> 
#> Random effects:
#>  Groups   Name        Variance Std.Dev.
#>  id       (Intercept) 0.000    0.000   
#>  Residual             1.748    1.322   
#> Number of obs: 104, groups:  id, 44
#> 
#> Fixed effects:
#>              Estimate Std. Error t value
#> (Intercept)   1.30986    0.52209   2.509
#> treat2       -0.09464    0.64503  -0.147
#> treat3       -0.89698    0.66934  -1.340
#> treat4       -0.66726    0.66819  -0.999
#> treat5        1.40364    0.68962   2.035
#> G1           -0.42105    0.42497  -0.991
#> G2            0.61061    0.47705   1.280
#> year2         2.31885    0.95608   2.425
#> year3         2.24022    0.85078   2.633
#> year4        -0.76560    0.89033  -0.860
#> size         -0.44355    0.27626  -1.606
#> treat2:G1     0.03985    0.58078   0.069
#> treat3:G1     1.23850    0.83524   1.483
#> treat4:G1     0.03143    0.57639   0.055
#> treat5:G1     0.36039    0.65372   0.551
#> treat2:G2    -0.13073    0.67027  -0.195
#> treat3:G2    -0.84184    0.70911  -1.187
#> treat4:G2    -0.07929    0.62306  -0.127
#> treat5:G2    -0.81681    0.61655  -1.325
#> treat2:year2  0.46098    1.27097   0.363
#> treat3:year2 -0.22867    1.87891  -0.122
#> treat4:year2  1.87100    1.30388   1.435
#> treat5:year2  1.15153    1.25003   0.921
#> treat2:year3 -0.47888    1.14257  -0.419
#> treat3:year3 -0.37929    1.81855  -0.209
#> treat4:year3 -0.15231    1.09026  -0.140
#> treat5:year3 -1.66341    1.08548  -1.532
#> treat2:year4  0.97095    1.04195   0.932
#> treat3:year4  1.04592    1.11988   0.934
#> treat4:year4  1.20306    1.07810   1.116
#> treat5:year4 -0.91330    1.16767  -0.782
#> 
#> Correlation matrix not shown by default, as p = 31 > 12.
#> Use print(x, correlation=TRUE)  or
#>     vcov(x)        if you need it
#> convergence code: 0
#> boundary (singular) fit: see ?isSingular

detach("package:lme4", unload=TRUE)

Создано в 2020-03-27 пакетом представлены (v0.3.0)

devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#>  setting  value                       
#>  version  R version 3.6.2 (2019-12-12)
#>  os       Ubuntu 16.04.5 LTS          
#>  system   x86_64, linux-gnu           
#>  ui       X11                         
#>  language eu                          
#>  collate  eu_ES.UTF-8                 
#>  ctype    eu_ES.UTF-8                 
#>  tz       Europe/Madrid               
#>  date     2020-03-27                  
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────
#>  package     * version  date       lib source        
#>  assertthat    0.2.1    2019-03-21 [1] CRAN (R 3.6.2)
#>  backports     1.1.5    2019-10-02 [1] CRAN (R 3.6.2)
#>  boot          1.3-23   2019-07-05 [4] CRAN (R 3.6.1)
#>  callr         3.4.1    2020-01-24 [1] CRAN (R 3.6.2)
#>  cli           2.0.1    2020-01-08 [1] CRAN (R 3.6.2)
#>  crayon        1.3.4    2017-09-16 [1] CRAN (R 3.6.2)
#>  desc          1.2.0    2018-05-01 [1] CRAN (R 3.6.2)
#>  devtools      2.2.2    2020-02-17 [1] CRAN (R 3.6.2)
#>  digest        0.6.23   2019-11-23 [1] CRAN (R 3.6.2)
#>  ellipsis      0.3.0    2019-09-20 [1] CRAN (R 3.6.2)
#>  evaluate      0.14     2019-05-28 [1] CRAN (R 3.6.2)
#>  fansi         0.4.1    2020-01-08 [1] CRAN (R 3.6.2)
#>  fs            1.3.1    2019-05-06 [1] CRAN (R 3.6.2)
#>  glue          1.3.1    2019-03-12 [1] CRAN (R 3.6.2)
#>  highr         0.8      2019-03-20 [1] CRAN (R 3.6.2)
#>  htmltools     0.4.0    2019-10-04 [1] CRAN (R 3.6.2)
#>  knitr         1.28     2020-02-06 [1] CRAN (R 3.6.2)
#>  lattice       0.20-40  2020-02-19 [1] CRAN (R 3.6.2)
#>  magrittr      1.5      2014-11-22 [1] CRAN (R 3.6.2)
#>  MASS          7.3-51.5 2019-12-20 [1] CRAN (R 3.6.2)
#>  Matrix      * 1.2-18   2019-11-27 [4] CRAN (R 3.6.1)
#>  memoise       1.1.0    2017-04-21 [1] CRAN (R 3.6.2)
#>  minqa         1.2.4    2014-10-09 [1] CRAN (R 3.6.2)
#>  nlme          3.1-144  2020-02-06 [4] CRAN (R 3.6.2)
#>  nloptr        1.2.2.1  2020-03-11 [1] CRAN (R 3.6.2)
#>  pkgbuild      1.0.6    2019-10-09 [1] CRAN (R 3.6.2)
#>  pkgload       1.0.2    2018-10-29 [1] CRAN (R 3.6.2)
#>  prettyunits   1.1.1    2020-01-24 [1] CRAN (R 3.6.2)
#>  processx      3.4.2    2020-02-09 [1] CRAN (R 3.6.2)
#>  ps            1.3.0    2018-12-21 [1] CRAN (R 3.6.2)
#>  R6            2.4.1    2019-11-12 [1] CRAN (R 3.6.2)
#>  Rcpp          1.0.3    2019-11-08 [1] CRAN (R 3.6.2)
#>  remotes       2.1.1    2020-02-15 [1] CRAN (R 3.6.2)
#>  rlang         0.4.4    2020-01-28 [1] CRAN (R 3.6.2)
#>  rmarkdown     2.1      2020-01-20 [1] CRAN (R 3.6.2)
#>  rprojroot     1.3-2    2018-01-03 [1] CRAN (R 3.6.2)
#>  rstudioapi    0.11     2020-02-07 [1] CRAN (R 3.6.2)
#>  sessioninfo   1.1.1    2018-11-05 [1] CRAN (R 3.6.2)
#>  stringi       1.4.5    2020-01-11 [1] CRAN (R 3.6.2)
#>  stringr       1.4.0    2019-02-10 [1] CRAN (R 3.6.2)
#>  testthat      2.3.2    2020-03-02 [1] CRAN (R 3.6.2)
#>  usethis       1.5.1    2019-07-04 [1] CRAN (R 3.6.2)
#>  withr         2.1.2    2018-03-15 [1] CRAN (R 3.6.2)
#>  xfun          0.12     2020-01-13 [1] CRAN (R 3.6.2)
#>  yaml          2.2.1    2020-02-01 [1] CRAN (R 3.6.2)
#> 
#> [1] /home/asier/R/x86_64-pc-linux-gnu-library/3.6
#> [2] /usr/local/lib/R/site-library
#> [3] /usr/lib/R/site-library
#> [4] /usr/lib/R/library
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...