Я сравниваю две многоуровневые модели в R, используя функцию anova (). Одна модель содержит управляющую переменную, а другая - экспериментальную переменную. Когда я сравниваю эти два, я получаю странный результат, где числовое значение равно 0, а значение p равно 1. Я бы интерпретировал это, поскольку модели существенно не отличаются, но это не имеет смысла с данными и другими анализами, которые я сделали с этой экспериментальной переменной. Может кто-нибудь помочь мне понять этот вывод?
Чтобы объяснить переменные, block_order (control) - это уравновешивание вопросов. Это фактор с 5 уровнями. team_num - случайный эффект 2 уровня; это команда участника, к которой они принадлежат. cent_team_wm_agg - это желание команды поддерживать здоровый вес. Это непрерывная переменная. exer_vig - это непрерывная зависимая переменная, и это то, как часто люди тренируются.
Вот результат сравнения моделей, который меня смутил:
anova(m2_ev_full_team, m1_ev_control_block_team)
refitting model(s) with ML (instead of REML)
Data: clean_data_0_nona
Models:
m2_ev_full_team: exer_vig ~ 1 + cent_team_wm_agg + (1 | team_num)
m1_ev_control_block_team: exer_vig ~ 1 + block_order + (1 | team_num)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
m2_ev_full_team 4 523.75 536.27 -257.88 515.75
m1_ev_control_block_team 8 533.96 559.00 -258.98 517.96 0 4 1
В случае, если это поможет, вот сами модели , Это с экспериментальной переменной:
summary(m2_ev_full_team <- lmer(exer_vig ~ 1 + cent_team_wm_agg + (1 |team_num), data = clean_data_0_nona))
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: exer_vig ~ 1 + cent_team_wm_agg + (1 | team_num)
Data: clean_data_0_nona
REML criterion at convergence: 519.7
Scaled residuals:
Min 1Q Median 3Q Max
-1.7585 -0.5819 -0.2432 0.5531 2.5569
Random effects:
Groups Name Variance Std.Dev.
team_num (Intercept) 0.1004 0.3168
Residual 1.1628 1.0783
Number of obs: 169, groups: team_num, 58
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 2.65955 0.09478 42.39962 28.061 <2e-16 ***
cent_team_wm_agg 0.73291 0.23572 64.27148 3.109 0.0028 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr)
cnt_tm_wm_g -0.004
И с контролем:
summary(m1_ev_control_block_team <- lmer(exer_vig ~ 1 + block_order + (1 |team_num), data = clean_data_0_nona))
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: exer_vig ~ 1 + block_order + (1 | team_num)
Data: clean_data_0_nona
REML criterion at convergence: 525.1
Scaled residuals:
Min 1Q Median 3Q Max
-1.6796 -0.6597 -0.1625 0.5291 2.0941
Random effects:
Groups Name Variance Std.Dev.
team_num (Intercept) 0.2499 0.4999
Residual 1.1003 1.0490
Number of obs: 169, groups: team_num, 58
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 3.0874 0.2513 155.4960 12.284 <2e-16 ***
block_orderBlock2|Block4|Block3 -0.2568 0.3057 154.8652 -0.840 0.4020
block_orderBlock3|Block2|Block4 -0.3036 0.3438 160.8279 -0.883 0.3785
block_orderBlock3|Block4|Block2 -0.6204 0.3225 161.5186 -1.924 0.0561 .
block_orderBlock4|Block2|Block3 -0.4215 0.3081 151.2908 -1.368 0.1733
block_orderBlock4|Block3|Block2 -0.7306 0.3178 156.5548 -2.299 0.0228 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) b_B2|B b_B3|B2 b_B3|B4 b_B4|B2
bl_B2|B4|B3 -0.757
bl_B3|B2|B4 -0.687 0.557
bl_B3|B4|B2 -0.733 0.585 0.543
bl_B4|B2|B3 -0.741 0.601 0.545 0.577
bl_B4|B3|B2 -0.734 0.586 0.535 0.561 0.575
РЕДАКТИРОВАТЬ: Если я должен был угадать, я предполагаю, что это потому, что модель управления имеет больше степеней свободы, чем экспериментальное, но это все, что я могу придумать. Я попытался запустить anova с измененным порядком моделей, но это ничего не меняет. Если это так, я не знаю, почему количество dfs могло бы изменить то, что лучше.
Спасибо!