интерпретация сравнения модели, когда квадрат хи равен 0 - PullRequest
0 голосов
/ 31 января 2020

Я сравниваю две многоуровневые модели в R, используя функцию anova (). Одна модель содержит управляющую переменную, а другая - экспериментальную переменную. Когда я сравниваю эти два, я получаю странный результат, где числовое значение равно 0, а значение p равно 1. Я бы интерпретировал это, поскольку модели существенно не отличаются, но это не имеет смысла с данными и другими анализами, которые я сделали с этой экспериментальной переменной. Может кто-нибудь помочь мне понять этот вывод?

Чтобы объяснить переменные, block_order (control) - это уравновешивание вопросов. Это фактор с 5 уровнями. team_num - случайный эффект 2 уровня; это команда участника, к которой они принадлежат. cent_team_wm_agg - это желание команды поддерживать здоровый вес. Это непрерывная переменная. exer_vig - это непрерывная зависимая переменная, и это то, как часто люди тренируются.

Вот результат сравнения моделей, который меня смутил:

anova(m2_ev_full_team, m1_ev_control_block_team) 

refitting model(s) with ML (instead of REML)
Data: clean_data_0_nona
Models:
m2_ev_full_team: exer_vig ~ 1 + cent_team_wm_agg + (1 | team_num)
m1_ev_control_block_team: exer_vig ~ 1 + block_order + (1 | team_num)
                         Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)
m2_ev_full_team           4 523.75 536.27 -257.88   515.75                        
m1_ev_control_block_team  8 533.96 559.00 -258.98   517.96     0      4          1

В случае, если это поможет, вот сами модели , Это с экспериментальной переменной:

summary(m2_ev_full_team <- lmer(exer_vig ~ 1 + cent_team_wm_agg + (1 |team_num), data = clean_data_0_nona))
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: exer_vig ~ 1 + cent_team_wm_agg + (1 | team_num)
   Data: clean_data_0_nona

REML criterion at convergence: 519.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.7585 -0.5819 -0.2432  0.5531  2.5569 

Random effects:
 Groups   Name        Variance Std.Dev.
 team_num (Intercept) 0.1004   0.3168  
 Residual             1.1628   1.0783  
Number of obs: 169, groups:  team_num, 58

Fixed effects:
                 Estimate Std. Error       df t value Pr(>|t|)    
(Intercept)       2.65955    0.09478 42.39962  28.061   <2e-16 ***
cent_team_wm_agg  0.73291    0.23572 64.27148   3.109   0.0028 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr)
cnt_tm_wm_g -0.004

И с контролем:

summary(m1_ev_control_block_team <- lmer(exer_vig ~ 1 + block_order + (1  |team_num), data = clean_data_0_nona))
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: exer_vig ~ 1 + block_order + (1 | team_num)
   Data: clean_data_0_nona

REML criterion at convergence: 525.1

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.6796 -0.6597 -0.1625  0.5291  2.0941 

Random effects:
 Groups   Name        Variance Std.Dev.
 team_num (Intercept) 0.2499   0.4999  
 Residual             1.1003   1.0490  
Number of obs: 169, groups:  team_num, 58

Fixed effects:
                                Estimate Std. Error       df t value Pr(>|t|)    
(Intercept)                       3.0874     0.2513 155.4960  12.284   <2e-16 ***
block_orderBlock2|Block4|Block3  -0.2568     0.3057 154.8652  -0.840   0.4020    
block_orderBlock3|Block2|Block4  -0.3036     0.3438 160.8279  -0.883   0.3785    
block_orderBlock3|Block4|Block2  -0.6204     0.3225 161.5186  -1.924   0.0561 .  
block_orderBlock4|Block2|Block3  -0.4215     0.3081 151.2908  -1.368   0.1733    
block_orderBlock4|Block3|Block2  -0.7306     0.3178 156.5548  -2.299   0.0228 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) b_B2|B b_B3|B2 b_B3|B4 b_B4|B2
bl_B2|B4|B3 -0.757                               
bl_B3|B2|B4 -0.687  0.557                        
bl_B3|B4|B2 -0.733  0.585  0.543                 
bl_B4|B2|B3 -0.741  0.601  0.545   0.577         
bl_B4|B3|B2 -0.734  0.586  0.535   0.561   0.575 

РЕДАКТИРОВАТЬ: Если я должен был угадать, я предполагаю, что это потому, что модель управления имеет больше степеней свободы, чем экспериментальное, но это все, что я могу придумать. Я попытался запустить anova с измененным порядком моделей, но это ничего не меняет. Если это так, я не знаю, почему количество dfs могло бы изменить то, что лучше.

Спасибо!

...