cld
(компактный буквенный дисплей) из пакета multcomp может сделать это для различных типов моделей.
library("lme4")
library("multcomp")
data <- structure(list(Group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L), .Label = c("G1", "G2", "G3"), class = "factor"),
Subject = structure(c(1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L), .Label = c("S1",
"S10", "S11", "S12", "S13", "S14", "S15", "S2", "S3", "S4",
"S5", "S6", "S7", "S8", "S9"), class = "factor"), Value = c(9.83,
13.62, 13.2, 14.69, 9.27, 11.68, 14.65, 12.21, 11.58, 13.58,
12.49, 10.28, 12.22, 12.58, 15.43, 9.47, 11.47, 10.79, 10.66,
10.87, 12.98, 12.85, 8.67, 10.45, 13.62, 13.64, 12.46, 8.66,
10.66, 13.18, 11.97, 13.56, 11.83, 14.02, 11.38, 14.15, 13.22,
9.14, 11.66, 14.2, 14.18, 11.26, 11.98, 13.77, 11.57)),
row.names = c(NA, -45L), class = "data.frame")
model <- lmer (Value~Group + (1|Subject), data = data)
tuk <- glht(model, linfct = mcp(Group = "Tukey"))
tuk.cld <- cld(tuk)
plot(tuk.cld)
Пример был адаптирован из: https://stats.stackexchange.com/questions/237512/how-to-perform-post-hoc-test-on-lmer-model
Для получения дополнительной информации о смешанных моделях, пожалуйста, рассмотрите https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html