Я хочу обучить модель на yolo, но после одного шага, дайте nan и -nan, у меня есть 300 изображений разного размера (почти 600 * 600) и один класс для определения изображения. раньше я давал хороший результат со 100 изображениями (точность обнаружения 75%), но я хочу дать лучший результат.
tiny_yolo.cfg
[net]
batch=64
subdivisions=8
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
max_batches = 120000
policy=steps
steps=-1,100,80000,100000
scales=.1,10,.1,.1
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=1
[convolutional]
batch_normalize=1
filters=30
size=3
stride=1
pad=1
activation=leaky
###########
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=30
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=30
activation=linear
[region]
anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
bias_match=1
classes=1
coords=4
num=5
softmax=1
jitter=.2
rescore=1
small_object=1
object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1
absolute=1
thresh = .6
random=1
и я разделил 80-20 данных о поездах и тестах. Я использую это Дар knet
, пожалуйста, помогите мне!