Например, у вас есть папка, подобная этой
full_dataset
|--horse (40 images)
|--donkey (30 images)
|--cow ((50 images)
|--zebra (70 images)
ПЕРВЫЙ ПУТЬ
import glob
horse = glob.glob('full_dataset/horse/*.*')
donkey = glob.glob('full_dataset/donkey/*.*')
cow = glob.glob('full_dataset/cow/*.*')
zebra = glob.glob('full_dataset/zebra/*.*')
data = []
labels = []
for i in horse:
image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB',
target_size= (280,280))
image=np.array(image)
data.append(image)
labels.append(0)
for i in donkey:
image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB',
target_size= (280,280))
image=np.array(image)
data.append(image)
labels.append(1)
for i in cow:
image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB',
target_size= (280,280))
image=np.array(image)
data.append(image)
labels.append(2)
for i in zebra:
image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB',
target_size= (280,280))
image=np.array(image)
data.append(image)
labels.append(3)
data = np.array(data)
labels = np.array(labels)
from sklearn.model_selection import train_test_split
X_train, X_test, ytrain, ytest = train_test_split(data, labels, test_size=0.2,
random_state=42)
ВТОРОЙ ПУТЬ
image_generator = ImageDataGenerator(rescale=1/255, validation_split=0.2)
train_dataset = image_generator.flow_from_directory(batch_size=32,
directory='full_dataset',
shuffle=True,
target_size=(280, 280),
subset="training",
class_mode='categorical')
validation_dataset = image_generator.flow_from_directory(batch_size=32,
directory='full_dataset',
shuffle=True,
target_size=(280, 280),
subset="validation",
class_mode='categorical')
Главный недостаток из Второго пути, вы можете не использовать для отображения изображения. Будет ошибка, если вы напишите validation_dataset[1]
. Но это сработало, если я использую первый способ: X_test[1]