Мои результаты прогноза выглядят так:
TestArray
[1,0,0,0,1,0,1,...,1,0,1,1],
[1,0,1,0,0,1,0,...,0,1,1,1],
[0,1,1,1,1,1,0,...,0,1,1,1],
.
.
.
[1,1,0,1,1,0,1,...,0,1,1,1],
PredictionArray
[1,0,0,0,0,1,1,...,1,0,1,1],
[1,0,1,1,1,1,0,...,1,0,0,1],
[0,1,0,1,0,0,0,...,1,1,1,1],
.
.
.
[1,1,0,1,1,0,1,...,0,1,1,1],
это размер массивов, которые у меня есть
TestArray.shape
Out[159]: (200, 24)
PredictionArray.shape
Out[159]: (200, 24)
Я хочу получить TP, TN, FP и FN для этих массивов
Я пробовал этот код
cm=confusion_matrix(TestArray.argmax(axis=1), PredictionArray.argmax(axis=1))
TN = cm[0][0]
FN = cm[1][0]
TP = cm[1][1]
FP = cm[0][1]
print(TN,FN,TP,FP)
, но результаты, которые я получил
TN = cm[0][0]
FN = cm[1][0]
TP = cm[1][1]
FP = cm[0][1]
print(TN,FN,TP,FP)
125 5 0 1
Я проверил форму см
cm.shape
Out[168]: (17, 17)
125 + 5 + 0 + 1 = 131, и это не равно числу столбцов, которые у меня есть, что 200
Я ожидаю иметь 200, так как каждая ячейка в массиве должна быть TF, TN, FP, TP, поэтому общее число должно быть 200
Как это исправить?
Вот пример проблемы
import numpy as np
from sklearn.metrics import confusion_matrix
TestArray = np.array(
[
[1,0,0,1,0,1,1,0,1,0,1,1,0,0,1,1,1,0,0,1],
[0,1,1,0,1,0,0,1,0,0,0,1,0,1,0,1,1,0,1,1],
[1,0,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0],
[0,1,1,1,0,0,0,0,0,1,0,0,1,0,0,1,0,1,1,1],
[0,0,0,0,1,1,0,1,1,0,0,1,0,1,1,0,1,1,1,1],
[1,0,0,1,1,1,0,1,1,0,1,0,0,1,1,0,0,1,0,0],
[1,1,1,0,0,1,0,0,1,1,0,1,0,1,1,1,1,1,0,1],
[0,0,0,1,0,0,1,0,1,0,1,0,0,0,0,1,0,0,1,1],
[1,0,1,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0,1,0],
[1,1,0,1,1,1,1,0,1,0,1,0,1,1,1,1,0,1,0,0]
])
TestArray.shape
PredictionArray = np.array(
[
[0,0,0,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0,1,1],
[0,1,0,0,1,0,1,1,0,0,0,1,1,0,0,1,1,0,0,1],
[1,1,0,1,1,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0],
[0,1,0,1,0,0,1,0,0,1,0,1,1,0,0,1,0,0,1,1],
[0,0,1,0,0,1,0,1,1,1,0,1,1,1,0,0,1,1,0,1],
[1,0,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,1,0],
[1,1,0,0,1,1,0,0,0,1,0,1,0,0,1,1,0,1,0,1],
[0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,1,1,0,1,1],
[1,0,1,1,0,0,0,1,0,1,0,1,1,1,1,0,0,0,1,0],
[1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,1,1,1,0,0]
])
PredictionArray.shape
cm=confusion_matrix(TestArray.argmax(axis=1), PredictionArray.argmax(axis=1))
TN = cm[0][0]
FN = cm[1][0]
TP = cm[1][1]
FP = cm[0][1]
print(TN,FN,TP,FP)
Вывод
5 0 2 0
= 5 + 0 + 2 + 0 = 7 !!
Есть 20 столбцов в массиве и 10 строк
, но cm дает всего 7 !!