Я попытался построить Probability Density Function (PDF) plot
своих данных после нахождения лучших параметров, но график показывает плоскую линию вместо кривой.
Мой сценарий приведен ниже:
from time import time
from datetime import datetime
start_time = datetime.now()
import pandas as pd
pd.options.display.float_format = '{:.4f}'.format
import numpy as np
import pickle
import scipy
import scipy.stats
import matplotlib.pyplot as plt
data= pd.read_csv("line_RXC_data.csv",usecols=['R'],parse_dates=True, squeeze=True)
df=data
y_std=df
# del yy
import warnings
warnings.filterwarnings("ignore")
# Create an index array (x) for data
y=df
#
# Create an index array (x) for data
x = np.arange(len(y))
size = len(y)
#simple visualisation of the data
plt.hist(y)
plt.title("Histogram of resistance ")
plt.xlabel("Resistance data visualization ")
plt.ylabel("Frequency")
plt.show()
y_df = pd.DataFrame(y)
tt=y_df.describe()
print(tt)
dist_names = [
'foldcauchy',
'beta',
'expon',
'exponnorm',
'norm',
'lognorm',
'dweibull',
'pareto',
'gamma'
]
x = np.arange(len(df))
size = len(df)
y_std = df
y=df
chi_square = []
p_values = []
# Set up 50 bins for chi-square test
# Observed data will be approximately evenly distrubuted aross all bins
percentile_bins = np.linspace(0,100,51)
percentile_cutoffs = np.percentile(y_std, percentile_bins)
observed_frequency, bins = (np.histogram(y_std, bins=percentile_cutoffs))
cum_observed_frequency = np.cumsum(observed_frequency)
# Loop through candidate distributions
for distribution in dist_names:
s1 = time()
# Set up distribution and get fitted distribution parameters
dist = getattr(scipy.stats, distribution)
# print("1")
param = dist.fit(y_std)
# print("2")
# Obtain the KS test P statistic, round it to 5 decimal places
p = scipy.stats.kstest(y_std, distribution, args=param)[1]
p = np.around(p, 5)
p_values.append(p)
# print("3")
# Get expected counts in percentile bins
# This is based on a 'cumulative distrubution function' (cdf)
cdf_fitted = dist.cdf(percentile_cutoffs, *param[:-2], loc=param[-2],
scale=param[-1])
# print("4")
expected_frequency = []
for bin in range(len(percentile_bins)-1):
expected_cdf_area = cdf_fitted[bin+1] - cdf_fitted[bin]
expected_frequency.append(expected_cdf_area)
# calculate chi-squared
expected_frequency = np.array(expected_frequency) * size
cum_expected_frequency = np.cumsum(expected_frequency)
ss = sum (((cum_expected_frequency - cum_observed_frequency) ** 2) / cum_observed_frequency)
chi_square.append(ss)
print(f"chi_square {distribution} time: {time() - s1}")
# print("std of predicted probability : ", np.std(cum_observed_frequency))
# Collate results and sort by goodness of fit (best at top)
results = pd.DataFrame()
results['Distribution'] = dist_names
results['chi_square'] = chi_square
results['p_value'] = p_values
results.sort_values(['chi_square'], inplace=True)
# Report results
print ('\nDistributions sorted by goodness of fit:')
print ('----------------------------------------')
print (results)
#%%
# Divide the observed data into 100 bins for plotting (this can be changed)
number_of_bins = 100
bin_cutoffs = np.linspace(np.percentile(y,0), np.percentile(y,99),number_of_bins)
# Create the plot
plt.figure(figsize=(7, 4))
h = plt.hist(y, bins = bin_cutoffs, color='0.70')
# Get the top three distributions from the previous phase
number_distributions_to_plot = 5
dist_names = results['Distribution'].iloc[0:number_distributions_to_plot]
#%%
# Create an empty list to stroe fitted distribution parameters
parameters = []
# Loop through the distributions ot get line fit and paraemters
for dist_name in dist_names:
# Set up distribution and store distribution paraemters
dist = getattr(scipy.stats, dist_name)
param = dist.fit(y)
parameters.append(param)
# Get line for each distribution (and scale to match observed data)
pdf_fitted = dist.pdf(x, *param[:-2], loc=param[-2], scale=param[-1])
scale_pdf = np.trapz (h[0], h[1][:-1]) / np.trapz (pdf_fitted, x)
pdf_fitted *= scale_pdf
# Add the line to the plot
plt.plot(pdf_fitted, label=dist_name)
# Set the plot x axis to contain 99% of the data
# This can be removed, but sometimes outlier data makes the plot less clear
plt.xlim(0,np.percentile(y,99))
# Add legend and display plotfig = plt.figure(figsize=(8,5))
plt.legend()
plt.title(u'Data distribution charateristics) \n' )
plt.xlabel(u'Resistance')
plt.ylabel('Frequency )')
plt.show()
# Store distribution paraemters in a dataframe (this could also be saved)
dist_parameters = pd.DataFrame()
dist_parameters['Distribution'] = (
results['Distribution'].iloc[0:number_distributions_to_plot])
dist_parameters['Distribution parameters'] = parameters
# Print parameter results
print ('\nDistribution parameters:')
print ('------------------------')
for index, row in dist_parameters.iterrows():
print ('\nDistribution:', row[0])
print ('Parameters:', row[1] )