Я хочу создать сравнение для нормального теста с Шапиро-Уилксом, Колмогоровым-Смирновым, Андерсоном-Дарлингом, Крамером фон Мизесом-даном Скорректированные методы Жарк-Бера на основе силы теста (1-бета) для размеров выборки n = 10,20,30,40 и 50.
testnormal=function(n,m,alfa)
{
require(nortest)
require(normtest)
require(xlsx)
pvalue=matrix(0,m,5)
decision=matrix(0,m,5)
for (i in 1:m)
{
data=runif(n,2,5)
test1=shapiro.test(data)
pv1=test1$p.value
pvalue[i,1]=pv1
if (pv1<alfa)
{
decision[i,1]=1
}
test2=ks.test(data,"pnorm",mean=mean(data),sd=sd(data))
pv2=test2$p.value
pvalue[i,2]=pv2
if (pv2<alfa)
{
decision[i,2]=1
}
test3=ad.test(data)
pv3=test3$p.value
pvalue[i,3]=pv3
if (pv3<alfa)
{
decision[i,3]=1
}
test4=cvm.test(data)
pv4=test4$p.value
pvalue[i,4]=pv4
if (pv4<alfa)
{
decision[i,4]=1
}
test5=ajb.norm.test(data)
pv5=test5$p.value
pvalue[i,5]=pv5
if (pv2<alfa)
{
decision[i,5]=1
}
}
result1=data.frame(pvalue)
result2=data.frame(decision)
colnames(result1)=c("SW","KS","AD","CvM","AJB")
colnames(result2)=c("SW","KS","AD","CvM","AJB")
write.xlsx(result1,"testnormal_pvalue.xlsx")
write.xlsx(result2,"testnormal_decision.xlsx")
one_min_beta=t(1-(colSums(decision)/m))
test.of.power=data.frame(one_min_beta)
colnames(test.of.power)=c("SW","KS","AD","CvM","AJB")
return(test.of.power)
}
simulation=testnormal(10,100,0.05)
simulation2=testnormal(20,100,0.05)
simulation3=testnormal(30,100,0.05)
simulation4=testnormal(40,100,0.05)
simulation5=testnormal(50,100,0.05)
output=rbind(simulation,simulation2,simulation3,simulation4,simulation5)
output
Я хочу изобразить силу теста, чтобы увидеть тенденции роста и уменьшения мощности теста по размеру выборки, любой может помогите пожалуйста?