У меня осталась одна проблема с ASSIMP DIRECT X C ++ ANIMATION WITH SKELETON.
for (UINT m = 0; m < currentMesh->mBones[k]->mNumWeights; m++) //verticer som påverkas
{
vertexVector[k].joints.x = currentMesh->mBones[k]->mWeights[m].mVertexId;
Этот код показывает все вершины, затронутые костью - k, внутри итерации.
Все эти вершины должны иметь один и тот же идентификатор вершины, поскольку все они подвержены влиянию одной и той же кости / сустава.
Проблема в том, что мне нужно составить список каждой вершины и список всех индексов лица, где Я сохраняю положение, UV, Normal и c.
Список, который отображает все вершины, не в том же порядке, что и списки, которые отображают все вершины, затронутые каждой костью.
Так как я могу объединить эти списки?
"vertexVector" ... et c - это пример списка с jointInfo, который соответствует vertexID. В нем есть место для большего количества мест и другая переменная для веса.
Но этот список явно не работает.
Что я делаю не так с Assimp? Надеюсь, это был ясный пост.
ОБНОВЛЕНИЕ Это то, как я строю матрицы: я не знаю, что не так.
void jointTransform(float
timeInSeconds, std::vector<DirectX::XMMATRIX>& transformM, aiAnimation*
ani, UINT nrOfJoints, std::vector<joints>& jointInfo, const aiScene*
scenePtr)
{
DirectX::XMMATRIX iD = DirectX::XMMatrixIdentity();
float ticksPerSecond = (float)ani->mTicksPerSecond;
if (ticksPerSecond == 0)
{
ticksPerSecond = 30;
}
float timeInTicks = timeInSeconds * ticksPerSecond;
float animationTime = fmod(timeInTicks, (float)ani->mDuration);
readNodeHeiarchy(animationTime, scenePtr->mRootNode, iD, jointInfo, ani,
scenePtr);
transformM.resize(nrOfJoints);
for (UINT i = 0; i < transformM.size(); i++)
{
transformM[i] = jointInfo[i].transformFinal;
}
}
void readNodeHeiarchy(float time, const aiNode* node, DirectX::XMMATRIX
parentMat, std::vector<joints>& jointInfo, aiAnimation* ani, const
aiScene* scenePtr)
{
std::string nodeNameString = node->mName.data;
//Skapa en parentTransform från noden. Som sedan skickas in som parent
matris, första gången är det identitetsmatrisen.
aiMatrix4x4 nodeTransform = node->mTransformation;
DirectX::XMMATRIX combined;
combined = DirectX::XMMatrixSet(nodeTransform.a1, nodeTransform.a2,
nodeTransform.a3, nodeTransform.a4,
nodeTransform.b1, nodeTransform.b2, nodeTransform.b3, nodeTransform.b4,
nodeTransform.c1, nodeTransform.c2, nodeTransform.c3, nodeTransform.c4,
nodeTransform.d1, nodeTransform.d2, nodeTransform.d3,
nodeTransform.d4);
const aiNodeAnim* joint = nullptr;
//Kolla om noden är ett ben.
for (UINT i = 0; i < ani->mNumChannels; i++)
{
if (nodeNameString == ani->mChannels[i]->mNodeName.data)
{
joint = ani->mChannels[i];
}
}
DirectX::XMMATRIX globalTransform = DirectX::XMMatrixIdentity();
//om den är ett ben så är joint inte längre nullptr, den blir det benet.
if (joint)
{
DirectX::XMMATRIX S;
DirectX::XMMATRIX R;
DirectX::XMMATRIX T;
//scale
aiVector3D scaleV;
calcLerpScale(scaleV, time, joint);
S = DirectX::XMMatrixScaling(scaleV.x, scaleV.y, scaleV.z);
//rotate
aiQuaternion rotationQ;
calcLerpRot(rotationQ, time, joint);
DirectX::XMVECTOR q;
q = DirectX::XMVectorSet(rotationQ.x, rotationQ.y, rotationQ.z,
rotationQ.w);
R = DirectX::XMMatrixRotationQuaternion(q);
//translate
aiVector3D transV;
calcLerpTrans(transV, time, joint);
T = DirectX::XMMatrixTranslation(transV.x, transV.y, transV.z);
combined = S * R * T;
globalTransform = combined * parentMat;
}
//DirectX::XMMATRIX globalTransform = combined * parentMat;
//if (jointInfo[jointInfo.size() - 1].name.C_Str() != nodeNameString)
//{
for (UINT i = 0; i < jointInfo.size(); i++)
{
if (jointInfo[i].name.C_Str() == nodeNameString)
{
OutputDebugStringA("\n");
OutputDebugStringA(jointInfo[i].name.C_Str());
OutputDebugStringA("\n");
aiMatrix4x4 off = jointInfo[i].offsetM;
DirectX::XMMATRIX offset;
offset = DirectX::XMMatrixSet(off.a1, off.a2, off.a3, off.a4,
off.b1, off.b2, off.b3, off.b4,
off.c1, off.c2, off.c3, off.c4,
off.d1, off.d2, off.d3, off.d4);
DirectX::XMMATRIX rootMInv;
aiMatrix4x4 rootInv = scenePtr->mRootNode-
>mTransformation.Inverse();
rootMInv = DirectX::XMMatrixSet(rootInv.a1, rootInv.a2,
rootInv.a3, rootInv.a4,
rootInv.b1, rootInv.b2, rootInv.b3, rootInv.b4,
rootInv.c1, rootInv.c2, rootInv.c3, rootInv.c4,
rootInv.d1, rootInv.d2, rootInv.d3, rootInv.d4);
jointInfo[i].transformFinal = offset * globalTransform *
rootMInv;
break;
}
}
//}
for (UINT i = 0; i < node->mNumChildren; i++)
{
readNodeHeiarchy(time, node->mChildren[i], globalTransform, jointInfo,
ani, scenePtr);
}
}
void calcLerpScale(aiVector3D& scale, float aniTime, const aiNodeAnim*
joint)
{
if (joint->mNumScalingKeys == 1)
{
scale = joint->mScalingKeys[0].mValue;
return;
}
UINT scaleInd = findIndexS(aniTime, joint);
UINT nextScale = scaleInd + 1;
assert(nextScale < joint->mNumScalingKeys);
float deltaTime = (float)joint->mScalingKeys[nextScale].mTime -
(float)joint->mScalingKeys[scaleInd].mTime;
float factor = (aniTime - (float)joint->mScalingKeys[scaleInd].mTime) /
deltaTime;
assert(factor >= 0.0f && factor <= 1.0f);
const aiVector3D& startScaleV = joint->mScalingKeys[scaleInd].mValue;
const aiVector3D& endScaleV = joint->mScalingKeys[nextScale].mValue;
//interpolate
aiVector3D Delta = endScaleV - startScaleV; // längden
scale = startScaleV + (factor * Delta); //gå ett antal steg beroende på
faktorn mellan start och slut.
scale.Normalize();
}
void calcLerpRot(aiQuaternion& rotation, float aniTime, const aiNodeAnim*
joint)
{
if (joint->mNumRotationKeys == 1)
{
rotation = joint->mRotationKeys[0].mValue;
return;
}
UINT rotIndex = findIndexRot(aniTime, joint);
UINT nextRot = (rotIndex + 1);
assert(nextRot < joint->mNumRotationKeys);
float deltaTime = (float)joint->mRotationKeys[nextRot].mTime -
(float)joint->mRotationKeys[rotIndex].mTime;
float factor = (aniTime - (float)joint->mRotationKeys[rotIndex].mTime) /
deltaTime;
assert(factor >= 0.0f && factor <= 1.0f);
const aiQuaternion& StartRotationQ = joint->mRotationKeys[rotIndex].mValue;
const aiQuaternion& EndRotationQ = joint->mRotationKeys[nextRot].mValue;
aiQuaternion::Interpolate(rotation, StartRotationQ, EndRotationQ, factor);
rotation.Normalize();
}
void calcLerpTrans(aiVector3D& translation, float aniTime, const
aiNodeAnim*
joint)
{
if (joint->mNumPositionKeys == 1)
{
translation = joint->mPositionKeys[0].mValue;
return;
}
UINT transIndex = findIndexT(aniTime, joint);
UINT nextTrans = (transIndex + 1);
assert(nextTrans < joint->mNumPositionKeys);
float deltaTime = (float)joint->mPositionKeys[nextTrans].mTime -
(float)joint->mPositionKeys[transIndex].mTime;
float factor = (aniTime - (float)joint->mPositionKeys[transIndex].mTime) /
deltaTime;
assert(factor >= 0.0f && factor <= 1.0f);
const aiVector3D& startTransV = joint->mPositionKeys[transIndex].mValue;
const aiVector3D& endTransV = joint->mPositionKeys[nextTrans].mValue;
//interpolate
aiVector3D Delta = endTransV - startTransV;
translation = startTransV + (factor * Delta);
translation.Normalize();
}
UINT findIndexRot(float aniTime, const aiNodeAnim* joint)
{
assert(joint->mNumRotationKeys > 0);
for (UINT i = 0; i < joint->mNumRotationKeys - 1; i++)
{
if (aniTime < (float)joint->mRotationKeys[i + 1].mTime)
{
return i;
}
}
assert(0);
}
}