Понять, как работает эта матрица преобразования - PullRequest
0 голосов
/ 28 апреля 2020

Я использую компонент Transform библиотеки SFML в качестве основы для своего кода, но я не понимаю, как он работает. Мы инициализируем ее как матрицу 3x3, представляющую перемещение, вращение и масштаб, но затем мы используем матрицу 4x4 для ее сохранения, а некоторые значения жестко закодированы. Начиная с этого я не могу понять все последующие операции.

Я ищу человека, который мог бы объяснить мне, как работает этот скрипт. Заранее спасибо!

Transform.h

class Transform
{
public:
    static const Transform Identity;

    Transform();
    Transform(
        float a00, float a01, float a02,
        float a10, float a11, float a12,
        float a20, float a21, float a22
    );

    const float* GetMatrix() const;
    Transform GetInverse() const;

    D3DXVECTOR2 TransformPoint(float x, float y) const;
    D3DXVECTOR2 TransformPoint(const D3DXVECTOR2& point) const;

    FloatRect TransformRect(const FloatRect& rectangle) const;

    Transform& Combine(const Transform& transform);

    Transform& Translate(float x, float y);
    Transform& Translate(const D3DXVECTOR2& offset);

    Transform& Rotate(float angle);
    Transform& Rotate(float angle, float centerX, float centerY);
    Transform& Rotate(float angle, const D3DXVECTOR2& center);

    Transform& Scale(float scaleX, float scaleY);
    Transform& Scale(float scaleX, float scaleY, float centerX, float centerY);
    Transform& Scale(const D3DXVECTOR2& factors);
    Transform& Scale(const D3DXVECTOR2& factors, const D3DXVECTOR2& center);

private:
    float _matrix[16];
};

Transform operator *(const Transform& left, const Transform& right);
Transform& operator *=(Transform& left, const Transform& right);
D3DXVECTOR2 operator *(const Transform& left, const D3DXVECTOR2& right);
bool operator ==(const Transform& left, const Transform& right);
bool operator !=(const Transform& left, const Transform& right);

Преобразование. cpp

const Transform Transform::Identity;

Transform::Transform()
{
    _matrix[0] = 1.f; _matrix[4] = 0.f; _matrix[8] = 0.f; _matrix[12] = 0.f;
    _matrix[1] = 0.f; _matrix[5] = 1.f; _matrix[9] = 0.f; _matrix[13] = 0.f;
    _matrix[2] = 0.f; _matrix[6] = 0.f; _matrix[10] = 1.f; _matrix[14] = 0.f;
    _matrix[3] = 0.f; _matrix[7] = 0.f; _matrix[11] = 0.f; _matrix[15] = 1.f;
}

Transform::Transform(
    float a00, float a01, float a02,
    float a10, float a11, float a12,
    float a20, float a21, float a22
)
{
    _matrix[0] = a00; _matrix[4] = a01; _matrix[8] = 0.f; _matrix[12] = a02;
    _matrix[1] = a10; _matrix[5] = a11; _matrix[9] = 0.f; _matrix[13] = a12;
    _matrix[2] = 0.f; _matrix[6] = 0.f; _matrix[10] = 1.f; _matrix[14] = 0.f;
    _matrix[3] = a20; _matrix[7] = a21; _matrix[11] = 0.f; _matrix[15] = a22;
}

const float* Transform::GetMatrix() const
{
    return _matrix;
}

Transform Transform::GetInverse() const
{
    float det = _matrix[0] * (_matrix[15] * _matrix[5] - _matrix[7] * _matrix[13]) -
        _matrix[1] * (_matrix[15] * _matrix[4] - _matrix[7] * _matrix[12]) +
        _matrix[3] * (_matrix[13] * _matrix[4] - _matrix[5] * _matrix[12]);

    if (det != 0.f)
    {
        return Transform((_matrix[15] * _matrix[5] - _matrix[7] * _matrix[13]) / det,
            -(_matrix[15] * _matrix[4] - _matrix[7] * _matrix[12]) / det,
            (_matrix[13] * _matrix[4] - _matrix[5] * _matrix[12]) / det,
            -(_matrix[15] * _matrix[1] - _matrix[3] * _matrix[13]) / det,
            (_matrix[15] * _matrix[0] - _matrix[3] * _matrix[12]) / det,
            -(_matrix[13] * _matrix[0] - _matrix[1] * _matrix[12]) / det,
            (_matrix[7] * _matrix[1] - _matrix[3] * _matrix[5]) / det,
            -(_matrix[7] * _matrix[0] - _matrix[3] * _matrix[4]) / det,
            (_matrix[5] * _matrix[0] - _matrix[1] * _matrix[4]) / det
        );
    }
    else
    {
        return Identity;
    }
}

D3DXVECTOR2 Transform::TransformPoint(float x, float y) const
{
    return D3DXVECTOR2(_matrix[0] * x + _matrix[4] * y + _matrix[12],
        _matrix[1] * x + _matrix[5] * y + _matrix[13]);
}

D3DXVECTOR2 Transform::TransformPoint(const D3DXVECTOR2& point) const
{
    return TransformPoint(point.x, point.y);
}

FloatRect Transform::TransformRect(const FloatRect& rectangle) const
{
    const D3DXVECTOR2 points[] =
    {
        TransformPoint(rectangle.left(), rectangle.top()),
        TransformPoint(rectangle.left(), rectangle.top() + rectangle.height()),
        TransformPoint(rectangle.left() + rectangle.width(), rectangle.top()),
        TransformPoint(rectangle.left() + rectangle.width(), rectangle.top() + rectangle.height())
    };

    float left = points[0].x;
    float top = points[0].y;
    float right = points[0].x;
    float bottom = points[0].y;

    for (int i = 1; i < 4; ++i)
    {
        if (points[i].x < left)   left = points[i].x;
        else if (points[i].x > right)  right = points[i].x;
        if (points[i].y < top)    top = points[i].y;
        else if (points[i].y > bottom) bottom = points[i].y;
    }

    return FloatRect(left, top, right - left, bottom - top);
}

Transform& Transform::Combine(const Transform& transform)
{
    const float* a = _matrix;
    const float* b = transform._matrix;

    *this = Transform(a[0] * b[0] + a[4] * b[1] + a[12] * b[3],
        a[0] * b[4] + a[4] * b[5] + a[12] * b[7],
        a[0] * b[12] + a[4] * b[13] + a[12] * b[15],
        a[1] * b[0] + a[5] * b[1] + a[13] * b[3],
        a[1] * b[4] + a[5] * b[5] + a[13] * b[7],
        a[1] * b[12] + a[5] * b[13] + a[13] * b[15],
        a[3] * b[0] + a[7] * b[1] + a[15] * b[3],
        a[3] * b[4] + a[7] * b[5] + a[15] * b[7],
        a[3] * b[12] + a[7] * b[13] + a[15] * b[15]);

    return *this;
}

Transform& Transform::Translate(float x, float y)
{
    Transform translation(1, 0, x,
        0, 1, y,
        0, 0, 1);

    return Combine(translation);
}

Transform& Transform::Translate(const D3DXVECTOR2& offset)
{
    return Translate(offset.x, offset.y);
}

Transform& Transform::Rotate(float angle)
{
    float rad = angle * 3.141592654f / 180.f;
    float cos = std::cos(rad);
    float sin = std::sin(rad);

    Transform rotation(cos, -sin, 0,
        sin, cos, 0,
        0, 0, 1);

    return Combine(rotation);
}

Transform& Transform::Rotate(float angle, float centerX, float centerY)
{
    float rad = angle * 3.141592654f / 180.f;
    float cos = std::cos(rad);
    float sin = std::sin(rad);

    Transform rotation(cos, -sin, centerX * (1 - cos) + centerY * sin,
        sin, cos, centerY * (1 - cos) - centerX * sin,
        0, 0, 1);

    return Combine(rotation);
}

Transform& Transform::Rotate(float angle, const D3DXVECTOR2& center)
{
    return Rotate(angle, center.x, center.y);
}

Transform& Transform::Scale(float scaleX, float scaleY)
{
    Transform scaling(scaleX, 0, 0,
        0, scaleY, 0,
        0, 0, 1);

    return Combine(scaling);
}

Transform& Transform::Scale(float scaleX, float scaleY, float centerX, float centerY)
{
    Transform scaling(scaleX, 0, centerX * (1 - scaleX),
        0, scaleY, centerY * (1 - scaleY),
        0, 0, 1);

    return Combine(scaling);
}

Transform& Transform::Scale(const D3DXVECTOR2& factors)
{
    return Scale(factors.x, factors.y);
}

Transform& Transform::Scale(const D3DXVECTOR2& factors, const D3DXVECTOR2& center)
{
    return Scale(factors.x, factors.y, center.x, center.y);
}

Transform operator *(const Transform& left, const Transform& right)
{
    return Transform(left).Combine(right);
}

Transform& operator *=(Transform& left, const Transform& right)
{
    return left.Combine(right);
}

D3DXVECTOR2 operator *(const Transform& left, const D3DXVECTOR2& right)
{
    return left.TransformPoint(right);
}

bool operator ==(const Transform& left, const Transform& right)
{
    const float* a = left.GetMatrix();
    const float* b = right.GetMatrix();

    return ((a[0] == b[0]) && (a[1] == b[1]) && (a[3] == b[3]) &&
        (a[4] == b[4]) && (a[5] == b[5]) && (a[7] == b[7]) &&
        (a[12] == b[12]) && (a[13] == b[13]) && (a[15] == b[15]));
}

bool operator !=(const Transform& left, const Transform& right)
{
    return !(left == right);
}

1 Ответ

0 голосов
/ 29 апреля 2020

Это очень широкий вопрос, поэтому он, вероятно, будет помечен как 'off-topi c'

Ключевое понимание здесь заключается в том, почему кодируется матрица 3x3 как 4х4. Это связано с использованием однородных координат . Это математическое решение, которое позволяет не только кодировать аффинные преобразования , такие как вращение, масштабирование и перемещение, но также поддерживает проективные преобразования, обычно используемые для трехмерных видов. Затем вы можете умножить все матрицы 4x4, чтобы все преобразования были объединены в одно умножение.

В однородных координатах, чтобы вернуться к «трехмерным» координатам, вы делаете 4-векторное * 4x4-матричное умножение и затем разделите результат на элемент 'w', чтобы вернуть его обратно в [xyz 1].

4x4 однородные матрицы организованы так, чтобы в него встраивалась стандартная матрица 3x3. Вот что делает этот ctor, например:

Transform::Transform(
    float a00, float a01, float a02,
    float a10, float a11, float a12,
    float a20, float a21, float a22
)

Фактическое расположение матрицы в памяти для этой библиотеки кажется немного странным, но это вопрос для авторов.

Матрицы 4x4 также лучше выравниваются в памяти на большинстве платформ, чем матрицы 3x3, особенно при использовании SIMD-операций, которые обычно имеют плавающие векторы шириной 2 или 4. Некоторые системы имеют матрицы 4x3 с неявным столбцом / строкой [0 0 0 1], которые обеспечивают хорошее выравнивание и немного более компактны для аффинных преобразований.

См. Также DirectXMath и это SimpleMath оболочка для другого примера этого стиля математической библиотеки, ориентированной на графику.

Существует множество вводных текстов по трехмерной графике, которые охватывают основы конвейера преобразования трехмерной графики. используя однородные координаты с матрицами 4x4. Если у вас есть доступ и средства, вам может пригодиться один из них.

...