Построение гистограммы в разные моменты времени моделирования gBM - PullRequest
1 голос
/ 03 мая 2020

Геометрия c Броуновское движение (гБМ) - это стохастический c процесс, который можно рассматривать как расширение стандартного броуновского движения.

Я пытаюсь написать функция, которая имитирует различные пути (ntraj пути) gBM, а затем строит гистограмму в определенных точках, указанных в списке tcheck. После построения этих графиков функция предназначена для наложения логнормального распределения на график каждый раз.

Вывод должен выглядеть следующим образом enter image description here

за исключением gBM, а не стандартного броуновского движения. Пока у меня есть функция для генерации нескольких путей gBM, как,

def oneDGeometricBM(nTraj=100,n=100,T=1.0,sigma=1,mu=0):
    '''
    DOCSTRING:
    1D geomwtric brownian motion
    INPUTS:
    ntraj = "number of trajectories"
    n = "length of a trajectory"
    T = "last time point, i.e final tradjectory t = {0,1,...,T}"
    sigma= volatility
    mu= percentage drift

    '''
    np.random.seed(52323)
    S_0 = 0

    # Discretize, dt =  time step = $t_{j+1}- t_{j}$
    dt = T/(n)  
    sqrtdt = np.sqrt(dt)

    # Container for different colors for each trajectory
    colors = plt.cm.jet(np.linspace(0,1,nTraj))
    # Container for trajectories
    xtraj=np.zeros(n+1,float)
    ztraj=np.zeros(n+1,float)
    trange=np.linspace(start = 0,stop = T ,num = n+1)

    # Simulation
    # Random Variable $X_{n}$ is distributed np.sqrt(dt)* N(mu=0,sigma=1) 
    for j in range(nTraj):
        # Loop over time
        for i in range(n):
            xtraj[i+1]=xtraj[i]+ sqrtdt * np.random.randn() + dt*mu
        # Loop again over time in order to make geometric drift
        ztraj = S_0 * np.exp(xtraj) # ztraj[z+1]=  ztraj[0]+ np.exp(xtraj[z])

        plt.plot(trange , xtraj,'b-',alpha=0.2, color=colors[j], lw=3.0,label="$\sigma$={}, $\mu$={:.5f}".format(sigma,mu))
    plt.title("1D Geometric Brownian Motion:\n nTraj={}, T={},\n $\Delta t$={:.3f}, $\sigma$={}, $\mu$={:.3f}".format(nTraj,T,dt,sigma,mu))    
    plt.xlabel(r'$t$')
    plt.ylabel(r'$Z_t$');

oneDGeometricBM(nTraj=5,n=10**3,T=10.0,sigma=0.8,mu=1.1)

enter image description here

Я видел много ответов на вопросы о том, как построить несколько пути gBM, но меня интересует, как взглянуть на гистограммы в определенные моменты времени c, а затем посмотреть на распределение. Ниже моя функция до сих пор. Это не работает, но я не могу понять, что я делаю неправильно. Я также добавил вывод, который получил.

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
from scipy.stats import norm, lognorm
ntraj = 10000
S_0 =0
sigma=1
mu=1
tfinal = 4.0
tcheck = [0.5, 1.0, 4.0]
dt = 0.01
xv = 1.0
'''
ntraj = 10**4
tfinal = 4.0
tcheck = [0.5, 1.0, 4.0]
dt = 0.01
xv = 5.0 # limits
'''
n=int(tfinal/dt)
sqrtdt = np.sqrt(dt)

x=np.zeros(shape=[ntraj,n+1], dtype=float)
z=np.zeros(shape=[ntraj,n+1], dtype=float)
zrange=np.arange(start=-xv, stop=xv, step=dt)

# Calculate the number of the bins 
binval = math.ceil(np.sqrt(ntraj))
# Nested for loop to create Drifted BM
for i in range(n):
    for j in range(ntraj):
        x[j,i+1]=x[j,i]+ sqrtdt*np.random.randn()


 #Nested loop to create gBM
for j0 in range(ntraj):
    for i0 in range(n+1):
        z[j0,i0] = 0 + np.exp(x[j0,i0])

# Loop to plot the distribution of gBM tradjectories at different times       
for i1 in range(n):
    # Compute histogram at every tsample , sample at time t
    t=(i1+1)*dt
    if t in tcheck:
       # Plot histogram on sample
       plt.hist(z[:,i1],bins=30,density=False,alpha=0.6,label=['t ={}'.format(t)] )
       # Superimpose each samples mean
       xbar = np.average(z[:,i1])
       plt.axvline(xbar, color='RED', linestyle='dashed', linewidth=2) 
       # Plot theoretic distribution { N(0, sqrt[t] ) }
       #plt.plot(xrange,norm.pdf(xrange,0.0,np.sqrt(t)),'k--')

enter image description here

Итак, чтобы подвести итог моего вопроса. Я пытаюсь смоделировать несколько траекторий gBM, сохранить результаты в массиве, затем l oop поверх этого массива и построить гистограмму по заданным c точкам, используя matplotlib, а затем наложить логнормальное распределение на мои гистограммы.

...