Я написал CNN, который принимает спектрограммы MF CC и предназначен для классификации изображений по пяти различным классам. Я тренировал модель в течение 30 эпох, и после первой эпохи показатели не менялись. Может ли это быть проблемой с несбалансированной классификацией, и если да, то как бы я сместил модель для набора данных, если это возможно? Ниже приведен код генератора данных, определение модели и выходные данные. У исходной модели было два дополнительных слоя, однако я начал настраивать вещи, когда пытался решить проблему
Определение генератора данных:
path = 'path_to_dataset'
CLASS_NAMES = ['belly_pain', 'burping', 'discomfort', 'hungry', 'tired']
CLASS_NAMES = np.array(CLASS_NAMES)
BATCH_SIZE = 32
IMG_HEIGHT = 150
IMG_WIDTH = 150
# 457 is the number of images total
STEPS_PER_EPOCH = np.ceil(457/BATCH_SIZE)
img_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255, validation_split=0.2, horizontal_flip=True, rotation_range=45, width_shift_range=.15, height_shift_range=.15)
train_data_gen = img_generator.flow_from_directory( directory=path, batch_size=BATCH_SIZE, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), classes = list(CLASS_NAMES), subset='training', class_mode='categorical')
validation_data_gen = img_generator.flow_from_directory( directory=path, batch_size=BATCH_SIZE, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), classes = list(CLASS_NAMES), subset='validation', class_mode='categorical')
Определение модели:
EPOCHS = 30
model = Sequential([
Conv2D(128, 3, activation='relu',
input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)),
MaxPooling2D(),
Flatten(),
Dense(512, activation='sigmoid'),
Dense(1)
])
opt = tf.keras.optimizers.Adamax(lr=0.001)
model.compile(optimizer=opt,
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=['accuracy'])
Первые 5 эпох:
Epoch 1/30
368/368 [==============================] - 371s 1s/step - loss: 0.6713 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Epoch 2/30
368/368 [==============================] - 235s 640ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Epoch 3/30
368/368 [==============================] - 233s 633ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Epoch 4/30
368/368 [==============================] - 236s 641ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Epoch 5/30
368/368 [==============================] - 234s 636ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Последние пять эпох:
Epoch 25/30
368/368 [==============================] - 231s 628ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Epoch 26/30
368/368 [==============================] - 227s 617ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Epoch 27/30
368/368 [==============================] - 228s 620ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Epoch 28/30
368/368 [==============================] - 234s 636ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Epoch 29/30
368/368 [==============================] - 235s 638ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000
Epoch 30/30
368/368 [==============================] - 234s 636ms/step - loss: 0.5004 - accuracy: 0.8000 - val_loss: 0.5004 - val_accuracy: 0.8000