Я пытаюсь построить модель, которая может классифицировать, есть ли на картинке животное или нет, но у меня проблемы с данными. Я пытаюсь запустить свой код:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D
from tensorflow.keras.layers import Activation, MaxPooling2D, Dropout, Flatten, Reshape
from tensorflow.keras.optimizers import RMSprop
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from matplotlib import pyplot
from matplotlib.image import imread
import tensorflow as tf
import os
import numpy as np
base = '/home/jose/Programming/aiml/Data/naturewatch'
# Directory of all the pictures with an animal
critter = base + '/critter/'
# Directory of all the pictures without an animal
no_critter = base + '/no_critter/'
def load_data():
data = []
labels = []
for raw in os.listdir(critter):
# The array of values
image = np.array(imread(critter + raw))
data.append(image)
# 1 for yes critter
labels.append(1)
# image.shape = (1088, 1920, 3)
for raw in os.listdir(no_critter):
# load image pixels
image = np.array(imread(no_critter + raw))
data.append(image)
# 0 for no critter
labels.append(0)
# image.shape = (1088, 1920, 3)
data = np.array(data)
labels = np.array(labels)
return data, labels
data, labels = load_data()
# (2308,)
print(data.shape)
print(labels.shape)
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=101)
print(X_train.shape) # (1846,)
print(X_test.shape)
print(y_train.shape) # (462,)
print(y_test.shape)
# Plot 9 images
for i, image in enumerate(X_train[:9]):
# define subplot
pyplot.subplot(330 + 1 + i)
pyplot.imshow(image)
print('image', image.shape, 'label', y_train[i])
# show the figure
pyplot.show()
dropout = 0.2
model = Sequential()
# Reshape image to a much smaller size
model.add(Reshape((272, 480, 3)))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(dropout))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(dropout))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(2))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = RMSprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
model.fit(X_train, y_train) # Causes error
Но возникает ошибка: ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type numpy.ndarray).
в строке model.fit(X_train, y_train)
. Есть идеи, почему это может происходить?
Я просмотрел этот пост Tensorflow - ValueError: не удалось преобразовать массив NumPy в Tensor (неподдерживаемый объект типа float) но решения не работают для меня, а именно преобразование поезда и тестирования, как это np.asarray(X).astype(np.float32)
(что вызывает еще одну ошибку ValueError: setting an array element with a sequence.
)
Поскольку ошибка жалуется на невозможность преобразовать np.array в тензор, я попытался использовать функцию tf.convert_to_tensor()
, но это привело к другой ошибке: ValueError: Can't convert non-rectangular Python sequence to Tensor.
Кто-нибудь знает, что именно здесь происходит?