В эксперименте самки fi sh подвергались воздействию двух уровней фотопериода (окружающей и сжатой) и двух уровней температуры (4 и 7). Они находились в четырех резервуарах (два резервуара для каждого фотопериода, по одному резервуару для каждой температуры в течение фотопериода). Всего было девять выборок, обозначенных в данных time_date. Среди других ответов стоит «k». Меня интересуют эффекты фотопериода, температуры и time_date на "k". Возникающие проблемы: несбалансированная конструкция (один фотопериод или уровень температуры не измеряется во время отбора проб), псевдорепликация (каждый резервуар является обработкой (температура замаскирована в пределах фотопериода)). немного почитав, я наткнулся на смешанные модели. Я пробовал с lmer (что более важно: я не уверен, прав ли я) и попал в предупреждения и выходы без p-значений. Я ценю вашу помощь. Заранее спасибо.
Вот пример данных
fem.fish <- structure(list(time_date = structure(c(8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L), .Label = c("30-Jan-18",
"11-Apr-18", "13-Jun-18", "07-Aug-18", "19-Sep-18", "30-Oct-18",
"28-Nov-18", "03-Jan-19", "17-Jan-19", "31-Jan-19", "14-Feb-19",
"28-Feb-19", "14-Mar-19", "27-Mar-19", "10-Apr-19", "24-Apr-19"
), class = "factor"), photo = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Ambient",
"Compress"), class = "factor"), temp = structure(c(2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("4",
"7"), class = "factor"), tank = structure(c(2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("T1",
"T2", "T3", "T4"), class = "factor"), k = c(5.041791145, 5.408503999,
5.535282299, 5.346402317, 5.376649977, 5.072021484, 6.097412109,
4.390658006, 5.13676712, 4.472827193, 5.381892125, 4.882544582,
4.655393586, 5.435528121, 4.985185185, 4.548431822, 5.041791145,
5.408503999, 5.535282299, 5.346402317, 5.376649977, 5.072021484,
6.097412109, 4.390658006, 5.13676712, 4.472827193, 5.381892125,
4.882544582, 4.655393586, 5.435528121, 4.985185185, 4.548431822,
5.517125816, 4.772205603, 5.928149807, 4.152323266, 4.666037968,
4.638984928, 4.044444444, 4.720296599, 5.315500686, 4.967790359,
3.520804755, 4.722326417, 5.051895044, 4.807450844, 5.096461818,
5.28703008, 5.653368614, 6.357164944, 3.979492188, 3.928861374,
5.632685221, 5.264668498, 5.281464786, 5.387205387, 4.332381668,
5.250388878, 4.580237638, 4.650926114, 5.65951009, 4.401587625,
5.194587481, 4.184813255, 4.44738449, 5.829977261, 4.331985587,
4.827988338, 4.022222222, 3.672891297, 5.148148148, 4.068381688,
5.71922963, 4.566763848, 5.330442907, 2.422536369, 5.346580575,
4.971865289, 5.018922289, 5.513702624, 4.432146456, 5.692296224,
4.738120151, 4.896057489, 5.50365439, 5.249023438, 5.737818961,
4.260276996, 5.242507722, 4.580758017, 5.021888504, 5.013662642,
4.308286338, 5.50840192, 4.732342764, 4.672289386, 5.715557782,
3.827088497, 4.632069971, 4.935541824, 4.008746356, 4.963859809,
4.836806618, 4.46244856, 4.839677641, 4.498269896, 4.88357943,
4.984069185, 4.596844478, 5.196200195, 5.165529005, 14.74622771,
5.397084548, 7.983198678, 5.691090246, 5.707491082, 5.187172012,
6.297376093, 4.647178889, 4.282407407, 4.333496094, 4.773656052,
4.770999725, 4.092207407, 3.917638484, 5.193905817, 3.704833984,
5.571239611, 4.226680384, 3.65230095, 4.78515625, 5.603027344,
4.159218067, 4.719370009, 4.437016946, 4.407713499, 4.284050303,
4.676783265, 4.311689337, 4.540625, 4.864470022, 4.668176455,
5.221193416, 4.997084123, 4.112752873, 5.587217586, 6.045051626,
4.605417744, 4.35030714, 5.185252617, 4.752696927, 4.446670562,
4.268256569, 4.30372087, 4.025205761, 5.696474074, 4.068342788,
3.5212701, 4.544646911, 5.212620027, 5.31978738, 4.879910442,
4.606482493, 4.33502906, 5.294067215, 5.770262391, 4.264308136,
4.501028807, 2.944958848, 4.180638577, 4.120435057, 3.833076111,
4.496793003, 4.232167131, 3.783896334, 5.070553936, 4.825776352,
4.643534043, 6.318587106, 5.66205358, 5.194631597, 4.72557037,
4.195096521, 4.956238551, 3.503093444, 5.24857851, 4.792524005,
4.44229595, 5.285131195, 4.335878892, 4.170953361, 4.045779268
)), row.names = c(NA, -192L), class = "data.frame")
То, что я пробовал, и первое предупреждение
fit1 <- lmer(k ~ 0 + photo*temp*time_date + (1|tank), data = fem.fish, REML = FALSE)
fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients
boundary (singular) fit: see ?isSingular
Мое резюме и еще одно предупреждение о корреляционной матрице
summary(fit1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: k ~ 0 + photo * temp * time_date + (1 | tank)
Data: fem.fish
AIC BIC logLik deviance df.resid
551.2 635.9 -249.6 499.2 166
Scaled residuals:
Min 1Q Median 3Q Max
-2.7467 -0.4380 -0.0447 0.3663 9.7226
Random effects:
Groups Name Variance Std.Dev.
tank (Intercept) 0.0000 0.0000
Residual 0.7883 0.8879
Number of obs: 192, groups: tank, 4
Fixed effects:
Estimate Std. Error t value
photoAmbient 5.284e+00 3.139e-01 16.832
photoCompress 4.937e+00 3.139e-01 15.728
temp7 -1.218e-14 4.439e-01 0.000
time_date17-Jan-19 -9.116e-02 4.439e-01 -0.205
time_date31-Jan-19 -9.798e-02 4.439e-01 -0.221
time_date14-Feb-19 1.264e-01 4.439e-01 0.285
time_date28-Feb-19 -3.986e-01 4.439e-01 -0.898
time_date14-Mar-19 3.655e-01 4.439e-01 0.823
time_date27-Mar-19 -3.979e-01 4.439e-01 -0.896
time_date10-Apr-19 -4.122e-01 4.439e-01 -0.929
time_date24-Apr-19 -2.184e-01 4.439e-01 -0.492
photoCompress:temp7 8.874e-15 6.278e-01 0.000
photoCompress:time_date31-Jan-19 -2.957e-01 6.278e-01 -0.471
photoCompress:time_date28-Feb-19 1.575e+00 6.278e-01 2.509
photoCompress:time_date14-Mar-19 -6.073e-01 6.278e-01 -0.967
temp7:time_date17-Jan-19 -4.121e-02 6.278e-01 -0.066
temp7:time_date31-Jan-19 2.382e-01 6.278e-01 0.379
temp7:time_date14-Feb-19 -2.024e-01 6.278e-01 -0.322
temp7:time_date28-Feb-19 -1.441e+00 6.278e-01 -2.295
temp7:time_date14-Mar-19 -1.104e+00 6.278e-01 -1.759
temp7:time_date27-Mar-19 -4.306e-01 6.278e-01 -0.686
temp7:time_date10-Apr-19 -7.885e-01 6.278e-01 -1.256
temp7:time_date24-Apr-19 -5.872e-01 6.278e-01 -0.935
photoCompress:temp7:time_date14-Mar-19 9.077e-01 8.879e-01 1.022
Correlation matrix not shown by default, as p = 24 > 12.
Use print(x, correlation=TRUE) or
vcov(x) if you need it
fit warnings:
fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients
convergence code: 0
boundary (singular) fit: see ?isSingular
Мое понимание t-значений совсем не очень хорошее, поэтому я не могу установить sh, есть ли существенные эффекты или даже взаимодействия значимы или нет.
Я буду ценю ваши предложения по моделированию (Подобрать правильную модель?) и многое другое из того, что вы считаете полезным
Большое спасибо всем.