Я пытаюсь решить одно и то же PDE в Mathematica и MATLAB, , где Он имеет граничное условие Дирихле слева, раздел не- постоянное граничное условие Неймана справа и нулевой поток везде. Непостоянное граничное условие определяется как , где было предварительно решено для, а все другие переменные являются константами. Я разработал код для решения этого PDE как в Mathematica, так и в MATLAB, однако они не дают одинаковых результатов, и я не знаю, какой код неверен.
Ниже приведен полный код Mathematica:
Needs["NDSolve`FEM`"]
e = 1.60217662*10^-19;
sige = 3.37*10^-4;
sigi = 18;
F = 96485;
n = -0.02;
c = 1;
pO2 = 1.52*10^-19;
Ie = -(2*F)*(c*pO2^n);
mu2 = -5.98*10^-19;
l = 10*10^-6;
y1 = 0.01;
y2 = 0.0025;
y3 = 0.0075;
meshRefine[vertices_, area_] := area > 10^-12;
mesh = ToElementMesh[
DiscretizeRegion[ImplicitRegion[True, {{x, 0, l}, {y, 0, y1}}]],
MeshRefinementFunction -> meshRefine];
bcmu = {DirichletCondition[mu[x, y] == 0, (x == 0 && 0 < y < y1)],
DirichletCondition[
mu[x, y] ==
mu2, (x == l &&
y2 < y < y3)]};
solmu = NDSolve[{Laplacian[mu[x, y], {x, y}] ==
0 + NeumannValue[0,
y == 0 ||
y == y1 || (x == l && 0 <= y <= y2) || (x == l &&
y3 <= y <= y1)], bcmu},
mu, {x, y} \[Element] mesh];
bcphi = DirichletCondition[phi[x, y] == 0, (x == 0 && 0 < y < y1)];
A = (Ie - sigi/(4*e)*(D[mu[x, y] /. solmu, x] /. x -> l))/(-sigi);
solphi = NDSolve[{Laplacian[phi[x, y], {x, y}] ==
0 + NeumannValue[0,
y == 0 ||
y == y1 || (x == l && 0 <= y <= y1) || (x == l &&
y3 <= y <= y1)] +
NeumannValue[-A[[1]], x == l && y2 < y < y3], bcphi},
phi, {x, y} \[Element] mesh];
DensityPlot[phi[x, y] /. solphi, {x, 0, l}, {y, 0, y1},
PlotLabel -> "Phi vs. x and y", PlotLegends -> Automatic]
Код дает следующий результат для phi:
Результат в Mathematica
А вот код MATLAB:
% Define constants
e = 1.60217662*10^-19;
sige = 3.37*10^-4;
sigi = 18;
F = 96485;
n = -0.02;
c = 1;
pO2 = 1.52*10^-19;
Ie = -(2*F)*(c*pO2^n);
mu2 = -5.98*10^-19;
l = 10*10^-6;
y1 = 0.01;
y2 = 0.0025;
y3 = 0.0075;
% Rectangle is code 3, 4 sides, followed by x-coordinates and then y-coordinates
R1 = [3,4,0,l,l,0,0,0,y2,y2]';
R2 = [3,4,0,l,l,0,y2,y2,y3,y3]';
R3 = [3,4,0,l,l,0,y3,y3,y1,y1]';
geom = [R1,R2,R3];
% Names for the two geometric objects
ns = (char('R1','R2','R3'))';
% Set formula
sf = 'R1+R2+R3';
% Create geometry
g = decsg(geom,sf,ns);
% Create mu geometry model
mumodel = createpde;
geometryFromEdges(mumodel,g);
% Apply boundary conditions
applyBoundaryCondition(mumodel,'dirichlet','Edge',8,'u',0);
applyBoundaryCondition(mumodel,'dirichlet','Edge',9,'u',0);
applyBoundaryCondition(mumodel,'dirichlet','Edge',10,'u',0);
applyBoundaryCondition(mumodel,'dirichlet','Edge',6,'u',mu2);
applyBoundaryCondition(mumodel,'neumann','Edge',1,'g',0);
applyBoundaryCondition(mumodel,'neumann','Edge',3,'g',0);
applyBoundaryCondition(mumodel,'neumann','Edge',4,'g',0);
applyBoundaryCondition(mumodel,'neumann','Edge',2,'g',0);
applyBoundaryCondition(mumodel,'neumann','Edge',5,'g',0);
applyBoundaryCondition(mumodel,'neumann','Edge',7,'g',0);
% Solve PDE for mu
specifyCoefficients(mumodel,'m',0,'d',0,'c',1,'a',0,'f',0);
generateMesh(mumodel,'Hmax',l);
solmu = solvepde(mumodel);
% Create phi geometry model
phimodel = createpde;
geometryFromEdges(phimodel,g);
% Make sure initial condition is suitable
setInitialConditions(phimodel,0);
setInitialConditions(phimodel,-0.7,'Edge',6);
% Define nonconstant Neumann boundary condition
bcfun = @(location,state)(sigi/(4*e)*evaluateGradient(solmu,l,location.y)-Ie)/sigi;
% Apply boundary conditions
applyBoundaryCondition(phimodel,'dirichlet','Edge',8,'u',0);
applyBoundaryCondition(phimodel,'dirichlet','Edge',9,'u',0);
applyBoundaryCondition(phimodel,'dirichlet','Edge',10,'u',0);
applyBoundaryCondition(phimodel,'neumann','Edge',6,'g',bcfun);
applyBoundaryCondition(phimodel,'neumann','Edge',1,'g',0);
applyBoundaryCondition(phimodel,'neumann','Edge',3,'g',0);
applyBoundaryCondition(phimodel,'neumann','Edge',4,'g',0);
applyBoundaryCondition(phimodel,'neumann','Edge',2,'g',0);
applyBoundaryCondition(phimodel,'neumann','Edge',5,'g',0);
applyBoundaryCondition(phimodel,'neumann','Edge',7,'g',0);
% Solve PDE for phi and plot results
specifyCoefficients(phimodel,'m',0,'d',0,'c',1,'a',0,'f',0);
generateMesh(phimodel,'Hmax',l);
solphi = solvepde(phimodel);
phi = solphi.NodalSolution;
pdeplot(phimodel,'XYData',phi)
title('Phi vs. x and y')
xlabel('x-position')
ylabel('y-position')
Код MATLAB производит это как результаты для phi:
Какой код правильный? Где ошибка?