У меня есть датафрейм с идентификаторами клиентов и их расходами за 2014-2018 гг. Я хочу иметь среднее значение расходов по идентификатору, но при вычислении среднего значения можно учитывать только годы до определенной даты (поэтому столбец «Дата» указывает, какие столбцы можно учитывать в качестве среднего).
Пример: для индекса 0 (ID: 12) в дате указано «2016-03-08», тогда среднее значение должно быть взято из столбцов «y_2014» и «y_2015», поэтому для этого индекса , среднее значение 111,0. Если дата слишком ранняя (например, где-то в 2014 году или раньше в этом случае), тогда должно быть возвращено NaN (см. Индексы 6 и 9).
Исходный фрейм данных:
y_2014 y_2015 y_2016 y_2017 y_2018 Date ID
0 100.0 122.0 324 632 NaN 2016-03-08 12
1 120.0 159.0 54 452 541.0 2015-04-09 96
2 NaN 164.0 687 165 245.0 2016-02-15 20
3 180.0 421.0 512 184 953.0 2018-05-01 73
4 110.0 654.0 913 173 103.0 2017-08-04 84
5 130.0 NaN 754 124 207.0 2016-07-03 26
6 170.0 256.0 843 97 806.0 2013-02-04 87
7 140.0 754.0 95 101 541.0 2016-06-08 64
8 80.0 985.0 184 84 90.0 2019-03-05 11
9 96.0 65.0 127 130 421.0 2014-05-14 34
Желаемый результат:
y_2014 y_2015 y_2016 y_2017 y_2018 Date ID mean
0 100.0 122.0 324 632 NaN 2016-03-08 12 111.0
1 120.0 159.0 54 452 541.0 2015-04-09 96 120.0
2 NaN 164.0 687 165 245.0 2016-02-15 20 164.0
3 180.0 421.0 512 184 953.0 2018-05-01 73 324.25
4 110.0 654.0 913 173 103.0 2017-08-04 84 559.0
5 130.0 NaN 754 124 207.0 2016-07-03 26 130.0
6 170.0 256.0 843 97 806.0 2013-02-04 87 NaN
7 140.0 754.0 95 101 541.0 2016-06-08 64 447
8 80.0 985.0 184 84 90.0 2019-03-05 11 284.6
9 96.0 65.0 127 130 421.0 2014-05-14 34 NaN
Пробный код: -> Я все еще работаю над этим, так как я действительно не знаю, как для начала, я пока только загрузил фрейм данных, возможно, что-то нужно сделать с пакетом 'datetime', чтобы получить желаемый фрейм данных?
import pandas as pd
import numpy as np
import datetime
df = pd.DataFrame({"ID": [12,96,20,73,84,26,87,64,11,34],
"y_2014": [100,120,np.nan,180,110,130,170,140,80,96],
"y_2015": [122,159,164,421,654,np.nan,256,754,985,65],
"y_2016": [324,54,687,512,913,754,843,95,184,127],
"y_2017": [632,452,165,184,173,124,97,101,84,130],
"y_2018": [np.nan,541,245,953,103,207,806,541,90,421],
"Date": ['2016-03-08', '2015-04-09', '2016-02-15', '2018-05-01', '2017-08-04',
'2016-07-03', '2013-02-04', '2016-06-08', '2019-03-05', '2014-05-14']})
print(df)