Я использую для компиляции и запуска кода из Features2D + Homography, чтобы найти учебное пособие для известного объекта, и я получаю эту
OpenCV Error: Assertion failed (npoints >= 0 && points2.checkVector(2) == npoint
s && points1.type() == points2.type()) in unknown function, file c:\Users\vp\wor
k\ocv\opencv\modules\calib3d\src\fundam.cpp, line 1062
ошибку времени выполнения.после отладки я обнаружил, что программа зависает при функции findHomography.
Unhandled exception at 0x760ab727 in OpenCVTemplateMatch.exe: Microsoft C++ exception: cv::Exception at memory location 0x0029eb3c..
в Введение в OpenCV, глава "Пространство имен cv" говорит, что
Некоторые из текущих или будущих внешних имен OpenCV могут конфликтовать с STL или другими библиотеками.В этом случае используйте явные спецификаторы пространства имен для разрешения конфликтов имен:
Я изменил свой код и везде использую явные спецификаторы пространства имен, но проблема не решена.Если вы можете, пожалуйста, помогите мне в этой проблеме или скажите, какая функция выполняет ту же функцию, что и findHomography, и не вызывает сбой программы.
А это мой код
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
void readme();
/** @function main */
int main( int argc, char** argv )
{
if( argc != 3 )
{ readme(); return -1; }
cv::Mat img_object = cv::imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
cv::Mat img_scene = cv::imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
cv::SurfFeatureDetector detector( minHessian );
std::vector<cv::KeyPoint> keypoints_object, keypoints_scene;
detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene );
//-- Step 2: Calculate descriptors (feature vectors)
cv::SurfDescriptorExtractor extractor;
cv::Mat descriptors_object, descriptors_scene;
extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
cv::FlannBasedMatcher matcher;
std::vector< cv::DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< cv::DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
cv::Mat img_matches;
cv::drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, cv::Scalar::all(-1), cv::Scalar::all(-1),
std::vector<char>(), cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Localize the object
std::vector<cv::Point2f> obj;
std::vector<cv::Point2f> scene;
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
cv::Mat H = cv::findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<cv::Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<cv::Point2f> scene_corners(4);
cv::perspectiveTransform( obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
cv::line( img_matches, scene_corners[0] + cv::Point2f( img_object.cols, 0), scene_corners[1] + cv::Point2f( img_object.cols, 0), cv::Scalar(0, 255, 0), 4 );
cv::line( img_matches, scene_corners[1] + cv::Point2f( img_object.cols, 0), scene_corners[2] + cv::Point2f( img_object.cols, 0), cv::Scalar( 0, 255, 0), 4 );
cv::line( img_matches, scene_corners[2] + cv::Point2f( img_object.cols, 0), scene_corners[3] + cv::Point2f( img_object.cols, 0), cv::Scalar( 0, 255, 0), 4 );
cv::line( img_matches, scene_corners[3] + cv::Point2f( img_object.cols, 0), scene_corners[0] + cv::Point2f( img_object.cols, 0), cv::Scalar( 0, 255, 0), 4 );
//-- Show detected matches
cv::imshow( "Good Matches & Object detection", img_matches );
cv::waitKey(0);
return 0;
}
/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }