У меня есть этот Java-код, который с набором Point на входе возвращает набор ребер графа, которые представляют триангуляцию Делоне.
Я хотел бы знать, какая стратегия использовалась для этого, если существует, имя используемого алгоритма.
В этом коде GraphEdge содержит две точки AWT и представляет ребро в триангуляции,GraphPoint расширяет Awt Point, и ребра окончательной триангуляции возвращаются в объекте TreeSet.
Моя цель - понять, как работает этот метод:
public TreeSet getEdges(int n, int[] x, int[] y, int[] z)
ниже полного исходного кода этоготриангуляция:
import java.awt.Point;
import java.util.Iterator;
import java.util.TreeSet;
public class DelaunayTriangulation
{
int[][] adjMatrix;
DelaunayTriangulation(int size)
{
this.adjMatrix = new int[size][size];
}
public int[][] getAdj() {
return this.adjMatrix;
}
public TreeSet getEdges(int n, int[] x, int[] y, int[] z)
{
TreeSet result = new TreeSet();
if (n == 2)
{
this.adjMatrix[0][1] = 1;
this.adjMatrix[1][0] = 1;
result.add(new GraphEdge(new GraphPoint(x[0], y[0]), new GraphPoint(x[1], y[1])));
return result;
}
for (int i = 0; i < n - 2; i++) {
for (int j = i + 1; j < n; j++) {
for (int k = i + 1; k < n; k++)
{
if (j == k) {
continue;
}
int xn = (y[j] - y[i]) * (z[k] - z[i]) - (y[k] - y[i]) * (z[j] - z[i]);
int yn = (x[k] - x[i]) * (z[j] - z[i]) - (x[j] - x[i]) * (z[k] - z[i]);
int zn = (x[j] - x[i]) * (y[k] - y[i]) - (x[k] - x[i]) * (y[j] - y[i]);
boolean flag;
if (flag = (zn < 0 ? 1 : 0) != 0) {
for (int m = 0; m < n; m++) {
flag = (flag) && ((x[m] - x[i]) * xn + (y[m] - y[i]) * yn + (z[m] - z[i]) * zn <= 0);
}
}
if (!flag)
{
continue;
}
result.add(new GraphEdge(new GraphPoint(x[i], y[i]), new GraphPoint(x[j], y[j])));
//System.out.println("----------");
//System.out.println(x[i]+" "+ y[i] +"----"+x[j]+" "+y[j]);
result.add(new GraphEdge(new GraphPoint(x[j], y[j]), new GraphPoint(x[k], y[k])));
//System.out.println(x[j]+" "+ y[j] +"----"+x[k]+" "+y[k]);
result.add(new GraphEdge(new GraphPoint(x[k], y[k]), new GraphPoint(x[i], y[i])));
//System.out.println(x[k]+" "+ y[k] +"----"+x[i]+" "+y[i]);
this.adjMatrix[i][j] = 1;
this.adjMatrix[j][i] = 1;
this.adjMatrix[k][i] = 1;
this.adjMatrix[i][k] = 1;
this.adjMatrix[j][k] = 1;
this.adjMatrix[k][j] = 1;
}
}
}
return result;
}
public TreeSet getEdges(TreeSet pointsSet)
{
if ((pointsSet != null) && (pointsSet.size() > 0))
{
int n = pointsSet.size();
int[] x = new int[n];
int[] y = new int[n];
int[] z = new int[n];
int i = 0;
Iterator iterator = pointsSet.iterator();
while (iterator.hasNext())
{
Point point = (Point)iterator.next();
x[i] = (int)point.getX();
y[i] = (int)point.getY();
z[i] = (x[i] * x[i] + y[i] * y[i]);
i++;
}
return getEdges(n, x, y, z);
}
return null;
}
}