Простой обратный код матрицы 3х3 (C ++) - PullRequest
35 голосов
/ 12 июня 2009

Какой самый простой способ вычислить обратную матрицу 3x3?

Я просто ищу короткий фрагмент кода, который поможет добиться успеха для неособых матриц, возможно, используя правило Крамера Это не должно быть высоко оптимизировано. Я бы предпочел простоту, а не скорость. Я бы не стал ссылаться на дополнительные библиотеки.

Ответы [ 13 ]

41 голосов
/ 29 августа 2013

Вот вариант ответа Бэтти, но он вычисляет правильный обратный. Версия Бэтти вычисляет транспонирование обратного.

// computes the inverse of a matrix m
double det = m(0, 0) * (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) -
             m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
             m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0));

double invdet = 1 / det;

Matrix33d minv; // inverse of matrix m
minv(0, 0) = (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) * invdet;
minv(0, 1) = (m(0, 2) * m(2, 1) - m(0, 1) * m(2, 2)) * invdet;
minv(0, 2) = (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) * invdet;
minv(1, 0) = (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) * invdet;
minv(1, 1) = (m(0, 0) * m(2, 2) - m(0, 2) * m(2, 0)) * invdet;
minv(1, 2) = (m(1, 0) * m(0, 2) - m(0, 0) * m(1, 2)) * invdet;
minv(2, 0) = (m(1, 0) * m(2, 1) - m(2, 0) * m(1, 1)) * invdet;
minv(2, 1) = (m(2, 0) * m(0, 1) - m(0, 0) * m(2, 1)) * invdet;
minv(2, 2) = (m(0, 0) * m(1, 1) - m(1, 0) * m(0, 1)) * invdet;
31 голосов
/ 12 июня 2009

Почему бы вам не попытаться написать это самостоятельно? Примите это как вызов. :)

Для матрицы 3 × 3

alt text
(источник: wolfram.com )

Матрица обратная

alt text
(источник: wolfram.com )

Полагаю, вы знаете, что такое определитель матрицы | A | есть.

Изображения (c) Wolfram | Alpha и mathworld.wolfram (06-11-09, 22,06)

26 голосов
/ 12 июня 2009

Этот фрагмент кода вычисляет транспонированную обратную матрицы A:

double determinant =    +A(0,0)*(A(1,1)*A(2,2)-A(2,1)*A(1,2))
                        -A(0,1)*(A(1,0)*A(2,2)-A(1,2)*A(2,0))
                        +A(0,2)*(A(1,0)*A(2,1)-A(1,1)*A(2,0));
double invdet = 1/determinant;
result(0,0) =  (A(1,1)*A(2,2)-A(2,1)*A(1,2))*invdet;
result(1,0) = -(A(0,1)*A(2,2)-A(0,2)*A(2,1))*invdet;
result(2,0) =  (A(0,1)*A(1,2)-A(0,2)*A(1,1))*invdet;
result(0,1) = -(A(1,0)*A(2,2)-A(1,2)*A(2,0))*invdet;
result(1,1) =  (A(0,0)*A(2,2)-A(0,2)*A(2,0))*invdet;
result(2,1) = -(A(0,0)*A(1,2)-A(1,0)*A(0,2))*invdet;
result(0,2) =  (A(1,0)*A(2,1)-A(2,0)*A(1,1))*invdet;
result(1,2) = -(A(0,0)*A(2,1)-A(2,0)*A(0,1))*invdet;
result(2,2) =  (A(0,0)*A(1,1)-A(1,0)*A(0,1))*invdet;

Хотя вопрос предусматривал неособые матрицы, вы все равно можете проверить, равен ли определитель нулю (или очень близок к нулю), и пометить его каким-либо образом, чтобы быть безопасным.

9 голосов
/ 12 июня 2009

При всем уважении к нашему неизвестному (yahoo) постеру, я смотрю на такой код и просто умираю немного изнутри. Алфавитный суп просто безумно сложно отлаживать. Одиночная опечатка в любом месте может действительно испортить весь ваш день. К сожалению, в этом конкретном примере отсутствовали переменные с подчеркиванием. Намного веселее, когда у нас есть a_b-c_d * e_f-g_h. Особенно при использовании шрифта, где _ и - имеют одинаковую длину пикселя.

Принимая Сувеш Пратапа по его предложению, я отмечаю:

Given 3x3 matrix:
       y0x0  y0x1  y0x2
       y1x0  y1x1  y1x2
       y2x0  y2x1  y2x2
Declared as double matrix [/*Y=*/3] [/*X=*/3];

(A) При взятии младшего из массива 3x3 у нас есть 4 представляющих интерес значения. Нижний индекс X / Y всегда равен 0 или 1. Более высокий индекс X / Y всегда равен 1 или 2. Всегда! Поэтому:

double determinantOfMinor( int          theRowHeightY,
                           int          theColumnWidthX,
                           const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
  int x1 = theColumnWidthX == 0 ? 1 : 0;  /* always either 0 or 1 */
  int x2 = theColumnWidthX == 2 ? 1 : 2;  /* always either 1 or 2 */
  int y1 = theRowHeightY   == 0 ? 1 : 0;  /* always either 0 or 1 */
  int y2 = theRowHeightY   == 2 ? 1 : 2;  /* always either 1 or 2 */

  return ( theMatrix [y1] [x1]  *  theMatrix [y2] [x2] )
      -  ( theMatrix [y1] [x2]  *  theMatrix [y2] [x1] );
}

(B) Определитель теперь: (Обратите внимание на знак минус!)

double determinant( const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
  return ( theMatrix [0] [0]  *  determinantOfMinor( 0, 0, theMatrix ) )
      -  ( theMatrix [0] [1]  *  determinantOfMinor( 0, 1, theMatrix ) )
      +  ( theMatrix [0] [2]  *  determinantOfMinor( 0, 2, theMatrix ) );
}

(C) И обратное теперь:

bool inverse( const double theMatrix [/*Y=*/3] [/*X=*/3],
                    double theOutput [/*Y=*/3] [/*X=*/3] )
{
  double det = determinant( theMatrix );

    /* Arbitrary for now.  This should be something nicer... */
  if ( ABS(det) < 1e-2 )
  {
    memset( theOutput, 0, sizeof theOutput );
    return false;
  }

  double oneOverDeterminant = 1.0 / det;

  for (   int y = 0;  y < 3;  y ++ )
    for ( int x = 0;  x < 3;  x ++   )
    {
        /* Rule is inverse = 1/det * minor of the TRANSPOSE matrix.  *
         * Note (y,x) becomes (x,y) INTENTIONALLY here!              */
      theOutput [y] [x]
        = determinantOfMinor( x, y, theMatrix ) * oneOverDeterminant;

        /* (y0,x1)  (y1,x0)  (y1,x2)  and (y2,x1)  all need to be negated. */
      if( 1 == ((x + y) % 2) )
        theOutput [y] [x] = - theOutput [y] [x];
    }

  return true;
}

И закруглите его с небольшим тестовым кодом низкого качества:

void printMatrix( const double theMatrix [/*Y=*/3] [/*X=*/3] )
{
  for ( int y = 0;  y < 3;  y ++ )
  {
    cout << "[  ";
    for ( int x = 0;  x < 3;  x ++   )
      cout << theMatrix [y] [x] << "  ";
    cout << "]" << endl;
  }
  cout << endl;
}

void matrixMultiply(  const double theMatrixA [/*Y=*/3] [/*X=*/3],
                      const double theMatrixB [/*Y=*/3] [/*X=*/3],
                            double theOutput  [/*Y=*/3] [/*X=*/3]  )
{
  for (   int y = 0;  y < 3;  y ++ )
    for ( int x = 0;  x < 3;  x ++   )
    {
      theOutput [y] [x] = 0;
      for ( int i = 0;  i < 3;  i ++ )
        theOutput [y] [x] +=  theMatrixA [y] [i] * theMatrixB [i] [x];
    }
}

int
main(int argc, char **argv)
{
  if ( argc > 1 )
    SRANDOM( atoi( argv[1] ) );

  double m[3][3] = { { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) },
                     { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) },
                     { RANDOM_D(0,1e3), RANDOM_D(0,1e3), RANDOM_D(0,1e3) } };
  double o[3][3], mm[3][3];

  if ( argc <= 2 )
    cout << fixed << setprecision(3);

  printMatrix(m);
  cout << endl << endl;

  SHOW( determinant(m) );
  cout << endl << endl;

  BOUT( inverse(m, o) );
  printMatrix(m);
  printMatrix(o);
  cout << endl << endl;

  matrixMultiply (m, o, mm );
  printMatrix(m);
  printMatrix(o);
  printMatrix(mm);  
  cout << endl << endl;
}

Запоздалая мысль:

Возможно, вы также захотите обнаружить очень большие детерминанты, так как ошибки округления повлияют на вашу точность!

3 голосов
/ 17 апреля 2015

Я только что создал класс QMatrix. Он использует встроенный вектор> контейнер. QMatrix.h Он использует метод Джордана-Гаусса для вычисления обратной квадратной матрицы.

Вы можете использовать его следующим образом:

#include "QMatrix.h"
#include <iostream>

int main(){
QMatrix<double> A(3,3,true);
QMatrix<double> Result = A.inverse()*A; //should give the idendity matrix

std::cout<<A.inverse()<<std::endl;
std::cout<<Result<<std::endl; // for checking
return 0;
}

Обратная функция реализована следующим образом:

Дан класс со следующими полями:

template<class T> class QMatrix{
public:
int rows, cols;
std::vector<std::vector<T> > A;

обратная функция ():

template<class T> 
QMatrix<T> QMatrix<T>:: inverse(){
Identity<T> Id(rows); //the Identity Matrix as a subclass of QMatrix.
QMatrix<T> Result = *this; // making a copy and transforming it to the Identity matrix
T epsilon = 0.000001;
for(int i=0;i<rows;++i){
    //check if Result(i,i)==0, if true, switch the row with another

    for(int j=i;j<rows;++j){
        if(std::abs(Result(j,j))<epsilon) { //uses Overloading()(int int) to extract element from Result Matrix
            Result.replace_rows(i,j+1); //switches rows i with j+1
        }
        else break;
    }
    // main part, making a triangular matrix
    Id(i)=Id(i)*(1.0/Result(i,i));
    Result(i)=Result(i)*(1.0/Result(i,i));  // Using overloading ()(int) to get a row form the matrix
    for(int j=i+1;j<rows;++j){
        T temp = Result(j,i);
        Result(j) = Result(j) - Result(i)*temp;
        Id(j) = Id(j) - Id(i)*temp; //doing the same operations to the identity matrix
        Result(j,i)=0; //not necessary, but looks nicer than 10^-15
    }
}

// solving a triangular matrix 
for(int i=rows-1;i>0;--i){
    for(int j=i-1;j>=0;--j){
        T temp = Result(j,i);
        Id(j) = Id(j) - temp*Id(i);
        Result(j)=Result(j)-temp*Result(i);
    }
}

return Id;
}
3 голосов
/ 08 августа 2013

Не пытайтесь сделать это самостоятельно, если вы серьезно относитесь к тому, чтобы правильно подойти к делу. Таким образом, хотя многие наивные / простые методы теоретически точны, они могут иметь неприятное числовое поведение для почти сингулярных матриц. В частности, вы можете получить ошибки отмены / округления, которые могут привести к произвольно плохим результатам.

«Правильным» способом является исключение Гаусса с поворотом строк и столбцов, так что вы всегда делитесь на наибольшее оставшееся численное значение. (Это также стабильно для матриц NxN.). Обратите внимание, что только поворот строки не позволяет выявить все плохие случаи.

Однако IMO, реализующий это правильно и быстро, не стоит вашего времени - используйте хорошо протестированную библиотеку, и в ней есть только куча заголовков.

3 голосов
/ 30 декабря 2009

Довольно хороший (я думаю) заголовочный файл, содержащий макросы для большинства матричных операций 2x2, 3x3 и 4x4, был доступен с большинством наборов инструментов OpenGL. Не стандартно, но я видел это в разных местах.

Вы можете проверить это здесь. В конце вы найдете инверсию 2x2, 3x3 и 4x4.

vvector.h

1 голос
/ 11 мая 2010
# include <conio.h>
# include<iostream.h>

const int size = 9;

int main()
{
    char ch;

    do
    {
        clrscr();
        int i, j, x, y, z, det, a[size], b[size];

        cout << "           **** MATRIX OF 3x3 ORDER ****"
             << endl
             << endl
             << endl;

        for (i = 0; i <= size; i++)
            a[i]=0;

        for (i = 0; i < size; i++)
        {
            cout << "Enter "
                 << i + 1
                 << " element of matrix=";

            cin >> a[i]; 

            cout << endl
                 <<endl;
        }

        clrscr();

        cout << "your entered matrix is "
             << endl
             <<endl;

        for (i = 0; i < size; i += 3)
            cout << a[i]
                 << "  "
                 << a[i+1]
                 << "  "
                 << a[i+2]
                 << endl
                 <<endl;

        cout << "Transpose of given matrix is"
             << endl
             << endl;

        for (i = 0; i < 3; i++)
            cout << a[i]
                 << "  "
                 << a[i+3]
                 << "  "
                 << a[i+6]
                 << endl
                 << endl;

        cout << "Determinent of given matrix is = ";

        x = a[0] * (a[4] * a[8] -a [5] * a[7]);
        y = a[1] * (a[3] * a[8] -a [5] * a[6]);
        z = a[2] * (a[3] * a[7] -a [4] * a[6]);
        det = x - y + z;

        cout << det 
             << endl
             << endl
             << endl
             << endl;

        if (det == 0)
        {
            cout << "As Determinent=0 so it is singular matrix and its inverse cannot exist"
                 << endl
                 << endl;

            goto quit;
        }

        b[0] = a[4] * a[8] - a[5] * a[7];
        b[1] = a[5] * a[6] - a[3] * a[8];
        b[2] = a[3] * a[7] - a[4] * a[6];
        b[3] = a[2] * a[7] - a[1] * a[8];
        b[4] = a[0] * a[8] - a[2] * a[6];
        b[5] = a[1] * a[6] - a[0] * a[7];
        b[6] = a[1] * a[5] - a[2] * a[4];
        b[7] = a[2] * a[3] - a[0] * a[5];
        b[8] = a[0] * a[4] - a[1] * a[3];

        cout << "Adjoint of given matrix is"
             << endl
             << endl;

        for (i = 0; i < 3; i++)
        {
            cout << b[i]
                 << "  "
                 << b[i+3]
                 << "  "
                 << b[i+6]
                 << endl
                 <<endl;
        }

        cout << endl
             <<endl;

        cout << "Inverse of given matrix is "
             << endl
             << endl
             << endl;

        for (i = 0; i < 3; i++)
        {
            cout << b[i]
                 << "/"
                 << det
                 << "  "
                 << b[i+3]
                 << "/" 
                 << det
                 << "  "
                 << b[i+6]
                 << "/" 
                 << det
                 << endl
                  <<endl;
        }

        quit:

        cout << endl
             << endl;

        cout << "Do You want to continue this again press (y/yes,n/no)";

        cin >> ch; 

        cout << endl
             << endl;
    } /* end do */

    while (ch == 'y');
    getch ();

    return 0;
}
1 голос
/ 31 декабря 2009

Я бы также порекомендовал Ilmbase, который является частью OpenEXR . Это хороший набор шаблонных 2,3,4-векторных и матричных процедур.

0 голосов
/ 04 марта 2014
//Function for inverse of the input square matrix 'J' of dimension 'dim':

vector<vector<double > > inverseVec33(vector<vector<double > > J, int dim)
{
//Matrix of Minors
 vector<vector<double > > invJ(dim,vector<double > (dim));
for(int i=0; i<dim; i++)
{
    for(int j=0; j<dim; j++)
    {
        invJ[i][j] = (J[(i+1)%dim][(j+1)%dim]*J[(i+2)%dim][(j+2)%dim] -
                      J[(i+2)%dim][(j+1)%dim]*J[(i+1)%dim][(j+2)%dim]);
    }
}

//determinant of the matrix:
double detJ = 0.0;
for(int j=0; j<dim; j++)
{ detJ += J[0][j]*invJ[0][j];}

//Inverse of the given matrix.
 vector<vector<double > > invJT(dim,vector<double > (dim));
 for(int i=0; i<dim; i++)
{
    for(int j=0; j<dim; j++)
    {
        invJT[i][j] = invJ[j][i]/detJ;
    }
}

return invJT;
}

void main()
{
    //given matrix:
vector<vector<double > > Jac(3,vector<double > (3));
Jac[0][0] = 1; Jac[0][1] = 2;  Jac[0][2] = 6;
Jac[1][0] = -3; Jac[1][1] = 4;  Jac[1][2] = 3;
Jac[2][0] = 5; Jac[2][1] = 1;  Jac[2][2] = -4;`

//Inverse of the matrix Jac:
vector<vector<double > > JacI(3,vector<double > (3));
    //call function and store inverse of J as JacI:
JacI = inverseVec33(Jac,3);
}
...