Я пытаюсь изменить andrej karpathys char rnn, чтобы использовать 256-мерные 8 или 16-битные векторы вместо текста.
Я прочитал код, но я не понимаю, что именно он делает.
код можно найти здесь https://github.com/karpathy/char-rnn
я считаю, что этот файл https://github.com/karpathy/char-rnn/blob/master/util/CharSplitLMMinibatchLoader.lua
это все, что нужно изменить, а именно эту часть
function CharSplitLMMinibatchLoader.text_to_tensor(in_textfile, out_vocabfile, out_tensorfile)
local timer = torch.Timer()
print('loading text file...')
local cache_len = 10000
local rawdata
local tot_len = 0
local f = assert(io.open(in_textfile, "r"))
-- create vocabulary if it doesn't exist yet
print('creating vocabulary mapping...')
-- record all characters to a set
local unordered = {}
rawdata = f:read(cache_len)
repeat
for char in rawdata:gmatch'.' do
if not unordered[char] then unordered[char] = true end
end
tot_len = tot_len + #rawdata
rawdata = f:read(cache_len)
until not rawdata
f:close()
-- sort into a table (i.e. keys become 1..N)
local ordered = {}
for char in pairs(unordered) do ordered[#ordered + 1] = char end
table.sort(ordered)
-- invert `ordered` to create the char->int mapping
local vocab_mapping = {}
for i, char in ipairs(ordered) do
vocab_mapping[char] = i
end
-- construct a tensor with all the data
print('putting data into tensor...')
local data = torch.ByteTensor(tot_len) -- store it into 1D first, then rearrange
f = assert(io.open(in_textfile, "r"))
local currlen = 0
rawdata = f:read(cache_len)
repeat
for i=1, #rawdata do
data[currlen+i] = vocab_mapping[rawdata:sub(i, i)] -- lua has no string indexing using []
end
currlen = currlen + #rawdata
rawdata = f:read(cache_len)
until not rawdata
f:close()
-- save output preprocessed files
print('saving ' .. out_vocabfile)
torch.save(out_vocabfile, vocab_mapping)
print('saving ' .. out_tensorfile)
torch.save(out_tensorfile, data)
end
Я не знаю питона, факела или луа, так что я вроде как потерян.