как изменить andrj carpathys char rnn для использования нетекстовых типов данных - PullRequest
0 голосов
/ 24 апреля 2019

Я пытаюсь изменить andrej karpathys char rnn, чтобы использовать 256-мерные 8 или 16-битные векторы вместо текста.

Я прочитал код, но я не понимаю, что именно он делает.

код можно найти здесь https://github.com/karpathy/char-rnn я считаю, что этот файл https://github.com/karpathy/char-rnn/blob/master/util/CharSplitLMMinibatchLoader.lua это все, что нужно изменить, а именно эту часть

function CharSplitLMMinibatchLoader.text_to_tensor(in_textfile, out_vocabfile, out_tensorfile)
    local timer = torch.Timer()

    print('loading text file...')
    local cache_len = 10000
    local rawdata
    local tot_len = 0
    local f = assert(io.open(in_textfile, "r"))

    -- create vocabulary if it doesn't exist yet
    print('creating vocabulary mapping...')
    -- record all characters to a set
    local unordered = {}
    rawdata = f:read(cache_len)
    repeat
        for char in rawdata:gmatch'.' do
            if not unordered[char] then unordered[char] = true end
        end
        tot_len = tot_len + #rawdata
        rawdata = f:read(cache_len)
    until not rawdata
    f:close()
    -- sort into a table (i.e. keys become 1..N)
    local ordered = {}
    for char in pairs(unordered) do ordered[#ordered + 1] = char end
    table.sort(ordered)
    -- invert `ordered` to create the char->int mapping
    local vocab_mapping = {}
    for i, char in ipairs(ordered) do
        vocab_mapping[char] = i
    end
    -- construct a tensor with all the data
    print('putting data into tensor...')
    local data = torch.ByteTensor(tot_len) -- store it into 1D first, then rearrange
    f = assert(io.open(in_textfile, "r"))
    local currlen = 0
    rawdata = f:read(cache_len)
    repeat
        for i=1, #rawdata do
            data[currlen+i] = vocab_mapping[rawdata:sub(i, i)] -- lua has no string indexing using []
        end
        currlen = currlen + #rawdata
        rawdata = f:read(cache_len)
    until not rawdata
    f:close()

    -- save output preprocessed files
    print('saving ' .. out_vocabfile)
    torch.save(out_vocabfile, vocab_mapping)
    print('saving ' .. out_tensorfile)
    torch.save(out_tensorfile, data)
end

Я не знаю питона, факела или луа, так что я вроде как потерян.

...