У меня есть модель, код которой указан ниже. cat_inputs
- это массив 4x3495 (в моих данных 3495 строк):
model_cat_inps = [Input(shape=(1,)) for _ in cat_inps]
model_cont_inp = Input(shape=(1, 37), name='cont_inp')
embeddings = [Embedding(input_dim=len(np.unique(x)),
output_dim=round(1.6 * len(np.unique(x)) ** 0.56)
)(y) for x, y in zip(cat_inps, model_cat_inps)]
bn1 = BatchNormalization(name='first_bn')(model_cont_inp)
concat = keras.layers.concatenate([*embeddings, bn1], name='concatenate')
relu = Dense(5, activation='relu', name='dense1')(concat)
bn = BatchNormalization(name='bn1')(relu)
drop = Dropout(0.2, name='dropout1')(bn)
relu = Dense(5, activation='relu', name='dense2')(drop)
bn = BatchNormalization()(relu)
drop = Dropout(0.2)(bn)
flat = Flatten()(drop)
out = Dense(3, activation='softmax', name='dense3')(flat)
model = Model(inputs=[*model_cat_inps, model_cont_inp], outputs=out)
Мне нужно получить выходные данные второго последнего слоя (Flatten). Для этого я определил функцию, например:
func = K.function(model.inputs, [model.layers[-2].output])
И чтобы получить промежуточные выходные результаты, я вызываю функцию:
Kz = func([*cat_inps, np.array(train_df[cont_vars]).reshape(3495, 1, 37)])
Этот вызов функции является частью функции, переданной объекту LearningRateScheduler
, поэтому, когда я вызываю model.fit
, я получаю следующую ошибку:
InvalidArgumentError Traceback (most recent call last)
<ipython-input-161-dcb47104ce2d> in <module>
----> 1 model.fit(x=[*cat_inps, np.array(train_df[cont_vars]).reshape(3495, 1, 37)], y=y, epochs=1, callbacks=[lr_scheduler])
/usr/local/lib/python3.5/dist-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1037 initial_epoch=initial_epoch,
1038 steps_per_epoch=steps_per_epoch,
-> 1039 validation_steps=validation_steps)
1040
1041 def evaluate(self, x=None, y=None,
/usr/local/lib/python3.5/dist-packages/keras/engine/training_arrays.py in fit_loop(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
144 for m in model.stateful_metric_functions:
145 m.reset_states()
--> 146 callbacks.on_epoch_begin(epoch)
147 epoch_logs = {}
148 if steps_per_epoch is not None:
/usr/local/lib/python3.5/dist-packages/keras/callbacks.py in on_epoch_begin(self, epoch, logs)
63 logs = logs or {}
64 for callback in self.callbacks:
---> 65 callback.on_epoch_begin(epoch, logs)
66 self._delta_t_batch = 0.
67 self._delta_ts_batch_begin = deque([], maxlen=self.queue_length)
/usr/local/lib/python3.5/dist-packages/keras/callbacks.py in on_epoch_begin(self, epoch, logs)
651 lr = float(K.get_value(self.model.optimizer.lr))
652 try: # new API
--> 653 lr = self.schedule(epoch, lr)
654 except TypeError: # old API for backward compatibility
655 lr = self.schedule(epoch)
<ipython-input-157-de7e7cdbe2a1> in lr_schedule(epoch, _)
6 lr (float32): learning rate
7 """
----> 8 Kz = func([*cat_inps, np.array(train_df[cont_vars]).reshape(3495, 1, 37)])
9 print(Kz)
10
/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
1437 ret = tf_session.TF_SessionRunCallable(
1438 self._session._session, self._handle, args, status,
-> 1439 run_metadata_ptr)
1440 if run_metadata:
1441 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
526 None, None,
527 compat.as_text(c_api.TF_Message(self.status.status)),
--> 528 c_api.TF_GetCode(self.status.status))
529 # Delete the underlying status object from memory otherwise it stays alive
530 # as there is a reference to status from this from the traceback due to
InvalidArgumentError: ConcatOp : Expected concatenating dimensions in the range [-2, 2), but got 2
[[{{node concatenate_1/concat}} = ConcatV2[N=5, T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](embedding_5/embedding_lookup, embedding_6/embedding_lookup, embedding_7/embedding_lookup, embedding_8/embedding_lookup, first_bn_1/cond/Merge, concatenate_1/concat/axis)]]
Как мне это исправить?