Я пытаюсь использовать DMA STM32F411RE с АЦП для получения 2048 выборок каждый для 3 входных каналов / выводов. Контакты A0, A1 и A2 подключены к датчику, для которого должна использоваться обработка изображений (преобразование Фурье).
Таким образом, я использую DMA / ADC для заполнения adc_buffer[6144]
всеми 2048 выборками из 3 выводов, используя прерывание, чтобы определить, заполнен ли этот буфер. Когда буфер заполнен, данные должны быть преобразованы в напряжения и помещены в правильный бин (данные идут x, y, z, x, y, z).
Хотя у меня все это работает по какой-то причине, мой кольцевой буфер DMA не заполняется данными. В предыдущей программе это работало нормально, но теперь я больше не могу сделать эту работу: adc_buffer остается 0 во время выполнения программы, и поэтому ISR HAL_ADC_ConvCpltCallback
никогда не запускается.
#include "main.h"
#include "arm_const_structs.h"
#include "core_cm4.h"
#include "math.h"
#include "arm_math.h"
#include <stdio.h>
#include <stdbool.h>
#include "main.h"
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
UART_HandleTypeDef huart2;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
float adc_buffer[6144] = {0}; // 2048 samples * 3 channels
/*
* Interrupt called when the input buffer adc_buffer is full.
* TO DO: Add void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) for double buffering, when conversion is half complete also run Fourier transform
*/
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if(hadc->Instance == ADC1) // if(hadc->Instance == ADC1 && !conversionPaused)
{
conversionPaused = 1; // Temporarily disable the conversion process
for (int samples= 0; samples < fftLen; samples++) // Allocates data from the 1 ADC buffer into the 3 separate axis buffers
{
Xin[samples] = ((3.3-0)/4096) * adc_buffer[0+3*samples]; // Allocate samples to X array, whilst transforming them into voltage: every 3rd value starting at 0 (0, 3, 6, 9)
Yin[samples] = ((3.3-0)/4096) * adc_buffer[1+3*samples]; // Allocate samples to X array, whilst transforming them into voltage: every 3rd value starting at 1 (1, 4, 7, 10)
Zin[samples] = ((3.3-0)/4096) * adc_buffer[2+3*samples]; // Allocate samples to X array, whilst transforming them into voltage: every 3rd value starting at 2 (2, 5, 8, 11)
}
}
}
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_USART2_UART_Init();
HAL_ADC_Start_IT(&hadc1);
HAL_ADC_Start_DMA(&hadc1, adc_buffer, bufferLen); // Maybe DMA and ADC IT are mutually exclusive?
while (1)
{
// Signal processing on Xin, Yin, Zin
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 393;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV8;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV8;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE; // Maybe this needs to be set to off for use with the circular buffer?
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 3;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = DISABLE; //ADC_EOC_SINGLE_CONV
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_56CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = 3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
}
Я подозреваю, что проблема заключается в конфигурации АЦП и прямого доступа к памяти, по которой я могу найти немного литературы. Доступно несколько примеров 1 2 3 4 , но это дает мало средств, поскольку их код выглядит так же, как мой.
Как редактирование ответа Тарика Веллинга, я не получаю полный пакет при генерации моего кода в CubeMX. В частности, мне не хватает полного MX_DMA_Init()
, так как мой генерирует только следующее:
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
Однако это несмотря на то, что мои настройки в CubeMX были настроены так, чтобы это было сгенерировано, как показано на рисунке ниже:
Я полностью сбит с толку относительно того, почему этот код не генерируется для меня в CubeMX, а для других, по-видимому, так и есть.