Я не вижу ничего плохого в вашем коде.Я предполагаю, что вы имеете в виду разные модули через IDE или что-то еще.Попробуйте явно импортировать ваши модули
from sympy import MatrixSymbol, diff, det, Inverse
from sympy.tensor import Idx
import sympy
print('SymPy version: {0}\n'.format(sympy.__version__)) # 1.3
i = Idx('i', 3)
j = Idx('j', 3)
k = Idx('k', 3)
l = Idx('l', 3)
F = MatrixSymbol('F', 3, 3)
print("Derivative of F wrt F")
print("---------------------")
print(diff(F[k, l], F[i, j]))
print("\n")
J = det(F)
print("Derivative of det(F) wrt F")
print("--------------------------")
# no errors
# print(diff(J, F[i, j]))
# EDIT based on question --this is not equivalent
# just an example by using a different function
# it means: try with a different approach ¯\_(ツ)_/¯
# try with an MDM
mutable_dense_matrix = sympy.Matrix(F)
print(diff(mutable_dense_matrix.det(), F[i, j]))
print("\n")
print("Derivative of inv(F) wrt F")
print("--------------------------")
Finv = Inverse(F)
print(Finv[i, j])
print(diff(Finv[k, l], F[i, j]))
print("\n")
Вывод
SymPy version: 1.3
Derivative of F wrt F
---------------------
KroneckerDelta(i, k)*KroneckerDelta(j, l)
Derivative of det(F) wrt F
--------------------------
KroneckerDelta(0, i)*KroneckerDelta(0, j)*F[1, 1]*F[2, 2] - KroneckerDelta(0, i)*KroneckerDelta(0, j)*F[1, 2]*F[2, 1] - KroneckerDelta(0, i)*KroneckerDelta(1, j)*F[1, 0]*F[2, 2] + KroneckerDelta(0, i)*KroneckerDelta(1, j)*F[1, 2]*F[2, 0] + KroneckerDelta(0, i)*KroneckerDelta(2, j)*F[1, 0]*F[2, 1] - KroneckerDelta(0, i)*KroneckerDelta(2, j)*F[1, 1]*F[2, 0] - KroneckerDelta(0, j)*KroneckerDelta(1, i)*F[0, 1]*F[2, 2] + KroneckerDelta(0, j)*KroneckerDelta(1, i)*F[0, 2]*F[2, 1] + KroneckerDelta(0, j)*KroneckerDelta(2, i)*F[0, 1]*F[1, 2] - KroneckerDelta(0, j)*KroneckerDelta(2, i)*F[0, 2]*F[1, 1] + KroneckerDelta(1, i)*KroneckerDelta(1, j)*F[0, 0]*F[2, 2] - KroneckerDelta(1, i)*KroneckerDelta(1, j)*F[0, 2]*F[2, 0] - KroneckerDelta(1, i)*KroneckerDelta(2, j)*F[0, 0]*F[2, 1] + KroneckerDelta(1, i)*KroneckerDelta(2, j)*F[0, 1]*F[2, 0] - KroneckerDelta(1, j)*KroneckerDelta(2, i)*F[0, 0]*F[1, 2] + KroneckerDelta(1, j)*KroneckerDelta(2, i)*F[0, 2]*F[1, 0] + KroneckerDelta(2, i)*KroneckerDelta(2, j)*F[0, 0]*F[1, 1] - KroneckerDelta(2, i)*KroneckerDelta(2, j)*F[0, 1]*F[1, 0]
Derivative of inv(F) wrt F
--------------------------
(F^-1)[i, j]
-Sum(KroneckerDelta(_z1, i)*KroneckerDelta(_z2, j)*(F^-1)[_z2, l]*(F^-1)[k, _z1], (_z1, 0, 2), (_z2, 0, 2))