В кадре данных с 6 столбцами (ABCDEF) из столбцов E или F один представляет собой линейную комбинацию первых 4 столбцов с различными коэффициентами, тогда как другой столбец является полиномиальной функцией от тех же входных данных.Найти, какой столбец является линейной функцией, а какой - полиномиальной.
Предоставление 30 выборок из кадра данных (всего 512 строк)
A B C D E F
0 28400 28482 28025 28060 738.0 117.570740
1 28136 28382 28135 28184 -146.0 295.430176
2 28145 28255 28097 28119 30.0 132.123714
3 28125 28192 27947 27981 357.0 101.298064
4 28060 28146 27981 28007 124.0 112.153318
5 27995 28100 27945 28022 149.0 182.427089
6 28088 28195 27985 28019 167.0 141.255137
7 28049 28157 27996 28008 22.0 120.069010
8 28025 28159 28025 28109 34.0 218.401641
9 28170 28638 28170 28614 420.0 919.376358
10 28666 28980 28551 28710 234.0 475.389093
11 28660 28779 28531 28634 345.0 222.895307
12 28590 28799 28568 28783 265.0 425.738484
13 28804 28930 28740 28808 138.0 194.449548
14 28770 28770 28650 28719 378.0 69.289005
15 28769 28770 28600 28638 413.0 39.225874
16 28694 28866 28674 28847 214.0 346.158401
17 28843 28928 28807 28874 121.0 152.281425
18 28921 28960 28680 28704 491.0 63.234310
19 28683 28950 28628 28905 397.0 547.115621
20 28877 28877 28712 28749 404.0 37.212629
21 28685 29011 28680 28949 222.0 598.104568
22 29045 29180 29045 29111 -3.0 201.306765
23 29220 29499 29216 29481 259.0 546.566915
24 29439 29485 29310 29376 344.0 112.394063
25 29319 29345 28951 29049 906.0 125.333702
26 29001 29009 28836 28938 526.0 110.611943
27 28905 28971 28851 28917 174.0 132.274514
28 28907 28916 28711 28862 685.0 161.078158
29 28890 29025 28802 28946 329.0 280.114923
Выполнение линейной регрессии для (всего 512 строк)
СтолбецABCD в качестве входных данных, столбец E в качестве целевых значений.
OUTPUT-
Перехватывать [-2.67164069e-12]
коэффициенты [[2. 3. -1.-4.]]
Столбец ABCD в качестве входных данных, столбец F в качестве целевых значений.
OUTPUT-
Перехват [0.32815962]
коэффициенты [[1.01293825 -1.0003835 1.00503772 -1.01765453]]
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
For column E
x = df.iloc[:, :4].values
y = df.iloc[:, [4]].values
regressor = LinearRegression()
regressor.fit(x, y)
print(regressor.intercept_)
print(regressor.coef_)
output
[-2.67164069e-12]
[[ 2. 3. -1. -4.]]
For column F
x_new = df.iloc[:, :4].values
y_new = df.iloc[:, [5]].values
regressor_new = LinearRegression()
regressor_new.fit(x_new, y_new)
print(regressor_new.intercept_)
print(regressor_new.coef_)
output
[0.32815962]
[[ 1.01293825 -1.0003835 1.00503772 -1.01765453]]
Один из 2 столбцов представляет собой линейную комбинацию первых 4 столбцов с различными коэффициентами, а другой - полиномиальную функцию от тех же входных данных.
Укажите, какой столбец является линейной функцией, иполиномиальный.