Для приведенной ниже модели я получил ошибку «Ожидаемый шаг - одно целое число или список».Я использовал предложенный ответ от https://discuss.pytorch.org/t/expected-stride-to-be-a-single-integer-value-or-a-list/17612/2 и добавил
img.unsqueeze_(0)
Теперь я получаю сообщение об ошибке:
RuntimeError: Input type (torch.cuda.ByteTensor) and weight type (torch.FloatTensor) should be the same
Для приведенного ниже кода я приведу три примера изображений и попытаюсь узнать представлениеони используют авто-кодировщик:
%reset -f
import torch.utils.data as data_utils
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from matplotlib import pyplot as plt
from sklearn import metrics
import datetime
from sklearn.preprocessing import MultiLabelBinarizer
import seaborn as sns
sns.set_style("darkgrid")
from ast import literal_eval
import numpy as np
from sklearn.preprocessing import scale
import seaborn as sns
sns.set_style("darkgrid")
import torch
import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable
from os import listdir
import cv2
import torch.nn.functional as F
import numpy as np
from numpy.polynomial.polynomial import polyfit
import matplotlib.pyplot as plt
number_channels = 3
%matplotlib inline
x = np.arange(10)
m = 1
b = 2
y = x * x
plt.plot(x, y)
plt.axis('off')
plt.savefig('1-increasing.jpg')
x = np.arange(10)
m = 0.01
b = 2
y = x * x * x
plt.plot(x, y)
plt.axis('off')
plt.savefig('2-increasing.jpg')
x = np.arange(10)
m = 0
b = 2
y = (m*x)+b
plt.plot(x, y)
plt.axis('off')
plt.savefig('constant.jpg')
batch_size_value = 2
train_image = []
train_image.append(cv2.imread('1-increasing.jpg', cv2.IMREAD_UNCHANGED).reshape(3, 288, 432))
train_image.append(cv2.imread('2-increasing.jpg', cv2.IMREAD_UNCHANGED).reshape(3, 288, 432))
train_image.append(cv2.imread('decreasing.jpg', cv2.IMREAD_UNCHANGED).reshape(3, 288, 432))
train_image.append(cv2.imread('constant.jpg', cv2.IMREAD_UNCHANGED).reshape(3, 288, 432))
data_loader = data_utils.DataLoader(train_image, batch_size=batch_size_value, shuffle=False,drop_last=True)
import torch
import torchvision
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
from torchvision.datasets import MNIST
import os
if not os.path.exists('./dc_img'):
os.mkdir('./dc_img')
def to_img(x):
x = 0.5 * (x + 1)
x = x.clamp(0, 1)
x = x.view(x.size(0), 1, 28, 28)
return x
num_epochs = 100
# batch_size = 128
batch_size = 2
learning_rate = 1e-3
dataloader = data_loader
class autoencoder(nn.Module):
def __init__(self):
super(autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 16, 3, stride=3, padding=1), # b, 16, 10, 10
nn.ReLU(True),
nn.MaxPool2d(2, stride=2), # b, 16, 5, 5
nn.Conv2d(16, 8, 3, stride=2, padding=1), # b, 8, 3, 3
nn.ReLU(True),
nn.MaxPool3d(3, stride=1) # b, 8, 2, 2
)
self.decoder = nn.Sequential(
nn.ConvTranspose3d(8, 16, 3, stride=2), # b, 16, 5, 5
nn.ReLU(True),
nn.ConvTranspose3d(16, 8, 5, stride=3, padding=1), # b, 8, 15, 15
nn.ReLU(True),
nn.ConvTranspose3d(8, 1, 2, stride=2, padding=1), # b, 1, 28, 28
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
model = autoencoder()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,
weight_decay=1e-5)
for epoch in range(num_epochs):
for data in dataloader:
img, _ = data
img.unsqueeze_(0)
# img.unsqueeze_(0)
# print(img)
# img.unsqueeze_(0)
img = Variable(img).cuda()
# ===================forward=====================
output = model(img)
loss = criterion(output, img)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================log=================to_img=======
print('epoch [{}/{}], loss:{:.4f}'
.format(epoch+1, num_epochs, loss.data[0]))
if epoch % 10 == 0:
pic = to_img(output.cpu().data)
save_image(pic, './dc_img/image_{}.png'.format(epoch))
torch.save(model.state_dict(), './conv_autoencoder.pth')
Но, как указано ранее, это приводит к ошибке:
299 def forward(self, input):
300 return F.conv2d(input, self.weight, self.bias, self.stride,
-> 301 self.padding, self.dilation, self.groups) 302 303
RuntimeError: Тип ввода (torch.cuda.ByteTensor) и тип веса (torch.FloatTensor) должны совпадать
Похоже, проблема связана сimg.unsqueeze_(0)
?
Как обучить автокодеру на этих изображениях?