Ошибка сегментации: 11 на DrawElementsCall - PullRequest
0 голосов
/ 10 июня 2019

В Mesh.h я получаю ошибку сегментации: 11 в моей функции рисования для "glDrawElements (GL_TRIANGLES, indices.size (), GL_UNSIGNED_INT, 0);" вызов функции.

Я пытался вызвать "glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, EBO)" после того, как буфер VAO был связан, как предлагали некоторые, но это не помогло. Modeloading.cpp:

//  ModelLoading.cpp
//  LightingTutorials
//
//  Created by Roma Desai on 6/6/19.
//  Copyright © 2019 Roma Desai. All rights reserved.

#include <GL/glew.h>
#include <GLFW/glfw3.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include "Camera.cpp"
#include <../include/Model.h>

#include <assimp/Importer.hpp>
#include <assimp/postprocess.h>
#include <assimp/scene.h>
#include <iostream>
/*
int main () {
    std::cout<<"hello";
}
*/

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;

std::string loadShaderString (const char* file);
//object shaders
std::string temp1 = loadShaderString("../shaders/vertexShader7a.glsl");
const char* vertex_shader = temp1.c_str();

std::string temp2 = loadShaderString("../shaders/fragmentShader7a.glsl");

const char* fragment_shader = temp2.c_str();

int main()
{
    // glfw: initialize and configure
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // uncomment this statement to fix compilation on OS X
#endif

    // glfw window creation
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "Window", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);

    // start GLEW extension handler
    glewExperimental = GL_TRUE;
    glewInit();

    // configure global opengl state
    glEnable(GL_DEPTH_TEST);

    // build and compile shaders
    GLuint vs = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vs, 1, &vertex_shader, NULL);
    glCompileShader(vs);
    GLint status = GL_TRUE;
    glGetShaderiv( vs, GL_COMPILE_STATUS, &status );

    GLuint fs = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fs, 1, &fragment_shader, NULL);
    glCompileShader(fs);

    GLuint shader_program = glCreateProgram(); //creating joint  shader program
    glAttachShader(shader_program, fs);
    glAttachShader(shader_program, vs);
    glLinkProgram(shader_program);

    // load models
    Model ourModel("../model/nanosuit/nanosuit.obj", shader_program);

    // render loop
    while (!glfwWindowShouldClose(window))
    {

        // render
        glClearColor(0.05f, 0.05f, 0.05f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        glUseProgram(shader_program);

        // view/projection transformations
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        glm::mat4 view = camera.GetViewMatrix();
        glUniformMatrix4fv(glGetUniformLocation(shader_program,"projection"), 1, GL_FALSE, &projection[0][0]);
        glUniformMatrix4fv(glGetUniformLocation(shader_program,"view"), 1, GL_FALSE, &view[0][0]);

        // render the loaded model
        glm::mat4 model = glm::mat4(1.0f);
        model = glm::translate(model, glm::vec3(0.0f, -1.75f, 0.0f)); // translate down
        model = glm::scale(model, glm::vec3(0.2f, 0.2f, 0.2f));    // scale it down

        glUniformMatrix4fv(glGetUniformLocation(shader_program,"model"), 1, GL_FALSE, &model[0][0]);

        ourModel.Draw(shader_program);

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        glfwSwapBuffers(window);
        glfwPollEvents();

    }

    // glfw: terminate, clearing all previously allocated GLFW resources.
    glfwTerminate();

    return 0;

}

/* function for loading shader from text file */
std::string loadShaderString (const char* file) {
    std::ifstream input(file);
    return std::string(std::istreambuf_iterator<char>(input),
                       std::istreambuf_iterator<char>());
}

model.h:

//
//  Model.cpp
//  LightingTutorials
//
//  Created by Roma Desai on 6/6/19.
//  Copyright © 2019 Roma Desai. All rights reserved.
//
#ifndef MODEL_H
#define MODEL_H

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

//#define STB_IMAGE_IMPLEMENTATION
#include <../include/stb_image.h>
#include <../include/Mesh.h>

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>
#include <assimp/Importer.hpp>
#include <assimp/postprocess.h>
#include <assimp/scene.h>
#include <stdio.h>
/*
int main() {
    std::cout << "hello";
}
 */


using namespace std;

unsigned int TextureFromFile(const char *path, const string &directory, bool gamma = false);

class Model
{
public:
    //  Model Data
    vector<Texture> textures_loaded;    // stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
    vector<Mesh> meshes;
    string directory;
    bool gammaCorrection;
    GLuint shader;

    //  Functions
    // constructor, expects a filepath to a 3D model.
    Model(string const &path, GLuint shader, bool gamma = false) : gammaCorrection(gamma)
    {
        this->shader = shader;

        loadModel(path);
    }

    // draws the model, and thus all its meshes
    void Draw(GLuint shader)
    {

        for(unsigned int i = 0; i < meshes.size(); i++) {
            meshes[i].Draw(shader);
        }

    }

private:
    //  Functions
    // loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
    void loadModel(string const &path)
    {
        // read file via ASSIMP
        Assimp::Importer importer;

        const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);

        // check for errors
        if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
        {
            cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
            return;
        }

        // retrieve the directory path of the filepath
        directory = path.substr(0, path.find_last_of('/'));

        // process ASSIMP's root node recursively
        processNode(scene->mRootNode, scene);


    }

    // processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
    void processNode(aiNode *node, const aiScene *scene)
    {
        // process each mesh located at the current node
        for(unsigned int i = 0; i < node->mNumMeshes; i++)
        {

            aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
            meshes.push_back(processMesh(mesh, scene));
        }
        for(unsigned int i = 0; i < node->mNumChildren; i++)
        {
            processNode(node->mChildren[i], scene);
        }

    }

    Mesh processMesh(aiMesh *mesh, const aiScene *scene)
    {

        // data to fill
        vector<Vertex> vertices;
        vector<unsigned int> indices;
        vector<Texture> textures;

        // Walk through each of the mesh's vertices
        for(unsigned int i = 0; i < mesh->mNumVertices; i++)
        {
            Vertex vertex;
            glm::vec3 vector; // we declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
            // positions
            vector.x = mesh->mVertices[i].x;
            vector.y = mesh->mVertices[i].y;
            vector.z = mesh->mVertices[i].z;
            vertex.Position = vector;
            // normals
            vector.x = mesh->mNormals[i].x;
            vector.y = mesh->mNormals[i].y;
            vector.z = mesh->mNormals[i].z;
            vertex.Normal = vector;
            // texture coordinates
            if(mesh->mTextureCoords[0]) // does the mesh contain texture coordinates?
            {
                glm::vec2 vec;
                // a vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
                // use models where a vertex can have multiple texture coordinates so we always take the first set (0).
                vec.x = mesh->mTextureCoords[0][i].x;
                vec.y = mesh->mTextureCoords[0][i].y;
                vertex.TexCoords = vec;
            }
            else {
                vertex.TexCoords = glm::vec2(0.0f, 0.0f);
            // tangent
            vector.x = mesh->mTangents[i].x;
            vector.y = mesh->mTangents[i].y;
            vector.z = mesh->mTangents[i].z;
            vertex.Tangent = vector;
            // bitangent
            vector.x = mesh->mBitangents[i].x;
            vector.y = mesh->mBitangents[i].y;
            vector.z = mesh->mBitangents[i].z;
            vertex.Bitangent = vector;
                vertices.push_back(vertex);
            }

        }

        for(unsigned int i = 0; i < mesh->mNumFaces; i++)
        {
            aiFace face = mesh->mFaces[i];
            for(unsigned int j = 0; j < face.mNumIndices; j++)
                indices.push_back(face.mIndices[j]);
        }
        // process materials
        aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
        // we assume a convention for sampler names in the shaders. Each diffuse texture should be named
        // as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER.
        // Same applies to other texture as the following list summarizes:
        // diffuse: texture_diffuseN
        // specular: texture_specularN
        // normal: texture_normalN

        // 1. diffuse maps
        vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
        textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
        // 2. specular maps
        vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
        textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
        // 3. normal maps
        std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
        textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
        // 4. height maps
        std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
        textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());

        // return a mesh object created from the extracted mesh data
        return Mesh(vertices, indices, textures, shader);


    }

    // checks all material textures of a given type and loads the textures if they're not loaded yet.
    // the required info is returned as a Texture struct.
    vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName)
    {
        vector<Texture> textures;
        for(unsigned int i = 0; i < mat->GetTextureCount(type); i++)
        {
            aiString str;
            mat->GetTexture(type, i, &str);

            bool skip = false;
            for(unsigned int j = 0; j < textures_loaded.size(); j++)
            {
                if(std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
                {
                    textures.push_back(textures_loaded[j]);
                    skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization)
                    break;
                }
            }
            if(!skip)
            {   // if texture hasn't been loaded already, load it
                Texture texture;
                texture.id = TextureFromFile(str.C_Str(), this->directory);
                texture.type = typeName;
                texture.path = str.C_Str();
                textures.push_back(texture);
                textures_loaded.push_back(texture);  // store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
            }
        }
        return textures;

    }
};


unsigned int TextureFromFile(const char *path, const string &directory, bool gamma)
{
    string filename = string(path);
    filename = directory + '/' + filename;

    unsigned int textureID;
    glGenTextures(1, &textureID);

    int width, height, nrComponents;
    unsigned char *data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0);
    if (data)
    {
        GLenum format;
        if (nrComponents == 1)
            format = GL_RED;
        else if (nrComponents == 3)
            format = GL_RGB;
        else if (nrComponents == 4)
            format = GL_RGBA;

        glBindTexture(GL_TEXTURE_2D, textureID);
        glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

        stbi_image_free(data);
    }
    else
    {
        std::cout << "Texture failed to load at path: " << path << std::endl;
        stbi_image_free(data);
    }

    return textureID;
}

#endif

Mesh.h:

//  Mesh.cpp
//  LightingTutorials
//  Created by Roma Desai on 6/6/19.
//  Copyright © 2019 Roma Desai. All rights reserved.

#include <iostream>
#include <GL/glew.h>
#define GLFW_DLL
#include <GLFW/glfw3.h>
#include <glm/glm.hpp>
#include <string>
#include <fstream>
#include <sstream>
#include <vector>

struct Vertex {
    glm::vec3 Position;
    glm::vec3 Normal;
    glm::vec2 TexCoords;
    glm::vec3 Tangent;
    glm::vec3 Bitangent;
};
struct Texture {
    unsigned int id;
    std::string type;
    std::string path;
};


class Mesh {
public:
    /*  Mesh Data  */
    std::vector<Vertex> vertices;
    std::vector<unsigned int> indices;
    std::vector<Texture> textures;
    unsigned int VAO;
    GLuint shader;
    /*  Functions  */
    Mesh(std::vector<Vertex> vertices, std::vector<unsigned int> indices, std::vector<Texture> textures, GLuint shader)
    {
        this->vertices = vertices;
        this->indices = indices;
        this->textures = textures;
        this->shader = shader;

        // set the vertex buffers/attribute pointers.
        setupMesh();
    }
    void Draw(GLuint shader)
    {

        unsigned int diffuseNr = 1;
        unsigned int specularNr = 1;
        unsigned int normalNr = 1;
        unsigned int heightNr = 1;

        for(unsigned int i = 0; i < textures.size(); i++)
        {
            glActiveTexture(GL_TEXTURE0 + i); // activate proper texture unit before binding
            // retrieve texture number (the N in diffuse_textureN)
            std::string number;
            std::string name = textures[i].type;
            if(name == "texture_diffuse") {
                number = std::to_string(diffuseNr++);
            }
            else if(name == "texture_specular") {
                number = std::to_string(specularNr++);
            }
            else if(name == "texture_normal") {
                number = std::to_string(normalNr++); // transfer unsigned int to stream
            }
            else if(name == "texture_height") {
                number = std::to_string(heightNr++);
            }
            //glUseProgram(shader);
            glUniform1i(glGetUniformLocation(shader, (name + number).c_str()), i);
            glBindTexture(GL_TEXTURE_2D, textures[i].id);
        }
        glActiveTexture(GL_TEXTURE0);

        // draw mesh
        glBindVertexArray(VAO);
        glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0);
        glBindVertexArray(0);

    }
private:
    /*  Render data  */
    unsigned int VBO, EBO;
    /*  Functions    */
void setupMesh()
{
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);

    glBindVertexArray(VAO);
    glBindBuffer(GL_ARRAY_BUFFER, VBO);

    glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW);

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int),
                 &indices[0], GL_STATIC_DRAW);
    //find locations

    GLint loc_pos = glGetAttribLocation(shader, "aPos" );
    GLint loc_texCoords = glGetAttribLocation(shader, "aTexCoords" );
    //std::cout << "apos position: " << loc_pos << " ";
    //std::cout << "texCoords position: " << loc_texCoords << " ";


    // vertex positions
    glEnableVertexAttribArray(loc_pos);
    glVertexAttribPointer(loc_pos, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);

    // vertex normals
    //glEnableVertexAttribArray(1);
   // glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal));
    // vertex texture coords

    glEnableVertexAttribArray(loc_texCoords);
    glVertexAttribPointer(loc_texCoords, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords));

    // vertex tangent
   // glEnableVertexAttribArray(3);
   // glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Tangent));
    // vertex bitangent
    //glEnableVertexAttribArray(4);
    //glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Bitangent));

    glBindVertexArray(0);
}
};

Я читаю много сообщений в Интернете, но, похоже, получаю ту же ошибку, несмотря на то, что я исправил некоторые изменения.

...