Я пытаюсь использовать LIME для объяснения бинарной модели классификации, которую я обучил с использованием XGboost. Я сталкиваюсь с ошибкой при вызове функции explain()
из LIME, которая подразумевает, что у меня есть столбцы, которые не совпадают в моей модели (или объясняющем устройстве), и новые данные, для которых я пытаюсь объяснить прогнозы.
Эта виньетка для LIME демонстрирует версию с xgboost, однако это текстовая проблема, которая немного отличается от моих табличных данных. Этот вопрос , кажется, сталкивается с той же ошибкой, но также и с матрицей терминов документа, которая, кажется, затеняет решение для моего случая. Я разработал минимальный пример с mtcars
, который выдал те же ошибки, что и мой собственный больший набор данных.
library(pacman)
p_load(tidyverse)
p_load(xgboost)
p_load(Matrix)
p_load(lime)
### Prepare data with partition
df <- mtcars %>% rownames_to_column()
length <- df %>% nrow()
df_train <- df %>% select(-rowname) %>% head((length-10))
df_test <- df %>% select(-rowname) %>% tail(10)
### Transform data into matrix objects for XGboost
train <- list(sparse.model.matrix(~., data = df_train %>% select(-vs)), (df_train$vs %>% as.factor()))
names(train) <- c("data", "label")
test <- list(sparse.model.matrix(~., data = df_test %>% select(-vs)), (df_test$vs %>% as.factor()))
names(test) <- c("data", "label")
dtrain <- xgb.DMatrix(data = train$data, label=train$label)
dtest <- xgb.DMatrix(data = test$data, label=test$label)
### Train model
watchlist <- list(train=dtrain, test=dtest)
mod_xgb_tree <- xgb.train(data = dtrain, booster = "gbtree", eta = .1, nrounds = 15, watchlist = watchlist)
### Check prediction works
output <- predict(mod_xgb_tree, test$data) %>% tibble()
### attempt lime explanation
explainer <- df_train %>% select(-vs) %>% lime(model = mod_xgb_tree) ### works, no error or warning
explanation <- df_test %>% select(-vs) %>% explain(explainer, n_features = 4) ### error, Features stored names in `object` and `newdata` are different!
names_test <- test$data@Dimnames[[2]] ### 10 names
names_mod <- mod_xgb_tree$feature_names ### 11 names
names_explainer <- explainer$feature_type %>% enframe() %>% pull(name) ### 11 names
### see whether pre-processing helps
my_preprocess <- function(df){
data <- df %>% select(-vs)
label <- df$vs
test <<- list(sparse.model.matrix( ~ ., data = data), label)
names(test) <<- c("data", "label")
dtest <- xgb.DMatrix(data = test$data, label=test$label)
dtest
}
explanation <- df_test %>% explain(explainer, preprocess = my_preprocess(), n_features = 4) ### Error in feature_distribution[[i]] : subscript out of bounds
### check that the preprocessing is working ok
dtest_check <- df_test %>% my_preprocess()
output_check <- predict(mod_xgb_tree, dtest_check)
Я предполагаю, что, поскольку explainer
имеет только имена исходных столбцов предиктора, где тестовые данные в своем преобразованном состоянии также имеют столбец (Intercept)
, это вызывает проблему. Я просто не нашел аккуратный способ предотвратить это. Любая помощь приветствуется. Я предполагаю, что должно быть аккуратное решение.