Я пытаюсь реализовать https://rd.springer.com/chapter/10.1007/978-3-319-68505-2_6, но сталкиваюсь с проблемами, чтобы отфильтровать и построить результаты. Я использую https://docs.opencv.org/3.4.2/d1/de0/tutorial_py_feature_homography.html для фильтрации совпадений. Когда я запускаю cv2.findHomography (sr [i ], de [i], cv2.RANSAC, 5.0), каждый раз происходит сбой python.
from skimage.segmentation import slic
from skimage.segmentation import mark_boundaries
from skimage.util import img_as_float
from skimage import io
import matplotlib.pyplot as plt
import cv2
import numpy as np
# load the image and convert it to a floating point data type
image = cv2.imread('C:\\Users\\pragyan.prakash\\Desktop\\p_orb\\001_F.png')
img1=image, cv2.COLOR_BGR2GRAY
segments = slic(img_as_float(image), n_segments = 100, sigma = 5)
# show the output of SLIC
fig = plt.figure("Superpixels")
ax = fig.add_subplot(1, 1, 1)
ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments))
plt.axis("off")
plt.show()
feature=[]
# loop over the unique segment values
for (i, segVal) in enumerate(np.unique(segments)):
# construct a mask for the segment
#print ("[x] inspecting segment %d" % (i))
mask = np.zeros(image.shape[:2], dtype = "uint8")
mask[segments == segVal] = 255
img=cv2.bitwise_and(image, image, mask = mask)
feature.append(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY))
cv2.waitKey(0)
# Initiate ORB detector
orb = cv2.ORB_create()
key=[]
desc=[]
sel= []
for i in feature:
kp,des=orb.detectAndCompute(i,None)
if des is not None:
key.append(kp)
desc.append(des)
sel.append(i)
# create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
match=[]
pairs = []
for i in range(len(desc)):
for j in range(len(desc)):
#print (i,j)
if i!=j:
match.append(bf.match(desc[i],desc[j]))
pairs.append((i,j))
sorted_match=[]
for i in match:
sorted_match.append(sorted(i,key=lambda x:x.distance))
list_kp1=[]
list_kp2=[]
sr=[]
de=[]
for m in sorted_match:
for e in m:
img1_idx = e.queryIdx
img2_idx = e.trainIdx
# x - columns
# y - rows
# Get the coordinates
i = sorted_match.index(m)
p,q = pairs[i]
(x1,y1) = key[p][img1_idx].pt
(x2,y2) = key[q][img2_idx].pt
sr.append(np.float32((x1,y1)).reshape(-1,1,2))
de.append(np.float32((x2,y2)).reshape(-1,1,2))
# Append to each list
x1=int(x1)
x2=int(x2)
y1=int(y1)
y2=int(y2)
list_kp1.append((x1, y1))
list_kp2.append((x2, y2))
lst=[]
ls1=[]
for i in range(len(sr)):
lst.append(cv2.findHomography(sr[i], de[i], cv2.RANSAC,5.0))
ls1.append(mask.ravel().tolist())