У меня есть инвестиционная вселенная STOXX, которая исходит от отсюда :
head(df)
Date SX5P SX5E SXXP SXXE SXXF SXXA DK5F DKXF
1 1986-12-31 775.00 900.82 82.76 98.58 98.06 69.06 645.26 65.56
2 1987-01-01 775.00 900.82 82.76 98.58 98.06 69.06 645.26 65.56
3 1987-01-02 770.89 891.78 82.57 97.80 97.43 69.37 647.62 65.81
4 1987-01-05 771.89 898.33 82.82 98.60 98.19 69.16 649.94 65.82
5 1987-01-06 775.92 902.32 83.28 99.19 98.83 69.50 652.49 66.06
6 1987-01-07 781.21 899.15 83.78 98.96 98.62 70.59 651.97 66.20
Понять принципы распределения действий. Я должен определить в конце каждого месяца распределение, чтобы каждая акция вносила одинаковый риск в общий портфель.
Затем я следую этому учебнику , который делает вас для Python.
Но, с одной стороны, у меня проблемы с расчетом дневной доходности. На самом деле у меня есть все данные благодаря:
url <- 'https://www.stoxx.com/document/Indices/Current/HistoricalData/hbrbcpe.txt'
df <- read.table(url, sep = ';', skip = 4, stringsAsFactors = FALSE)
names(df) <- c('Date','SX5P','SX5E','SXXP','SXXE','SXXF','SXXA','DK5F','DKXF')
df$Date <- as.Date(sub('(.{2}).(.{2}).(.{4})', "\\3-\\2-\\1", df$Date))
А потом я должен их вычислить. Я видел, что есть функция, Delt
, которая говорит, что она может быть сделана между двумя столбцами. Но я должен сделать различия между каждой клеткой. Я не знаю, как это сделать:
new = df[2:9]
# How to calculate the returns ?
Delt(df.a_given_day,df.a_given_day_plus_1,k=0:2) #... Delt do it 0,1 y 2 periods between two columns.
После этого я могу вычислить ковариацию с помощью cov_matrix_df <- cov(data.matrix(new, rownames.force = NA))
и продолжить поиск, чтобы рассчитать риск.
С другой стороны, я не знаю, как изменить его для определения в конце каждого месяца риска принятия решения в конце каждого месяца распределения.
моя попытка:
С этот ответ Я пытался из этого ответа:
dr_df = cbind(df[-1,1],apply(df[,-1],2,function(x) diff(x)/head(x,-1)))
Что возвращает:
> head(dr_df)
SX5P SX5E SXXP SXXE SXXF SXXA
[1,] 6209 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
[2,] 6210 -0.005303226 -0.010035301 -0.002295795 -0.007912355 -0.006424638 0.004488850
[3,] 6213 0.001297202 0.007344861 0.003027734 0.008179959 0.007800472 -0.003027245
[4,] 6214 0.005220951 0.004441575 0.005554214 0.005983773 0.006517975 0.004916136
[5,] 6215 0.006817713 -0.003513166 0.006003842 -0.002318782 -0.002124861 0.015683453
[6,] 6216 -0.004595435 -0.013101262 -0.003103366 -0.011014551 -0.009531535 0.005949851
DK5F DKXF
[1,] 0.0000000000 0.0000000000
[2,] 0.0036574404 0.0038133008
[3,] 0.0035823477 0.0001519526
[4,] 0.0039234391 0.0036463081
[5,] -0.0007969471 0.0021192855
[6,] -0.0098164026 -0.0087613293
Что кажется довольно хорошим, но я не понимаю код: / И когда я пытаюсь создать ковариационную матрицу, у меня возникают некоторые проблемы:
> cov(dr_df[2:8])
Error in cov(dr_df[2:8]) : supply both 'x' and 'y' or a matrix-like 'x'
> cov(dr_df)
SX5P SX5E SXXP SXXE SXXF SXXA DK5F DKXF
9886513 NA NA NA NA NA NA NA NA
SX5P NA NA NA NA NA NA NA NA NA
SX5E NA NA NA NA NA NA NA NA NA
SXXP NA NA NA NA NA NA NA NA NA
SXXE NA NA NA NA NA NA NA NA NA
SXXF NA NA NA NA NA NA NA NA NA
SXXA NA NA NA NA NA NA NA NA NA
DK5F NA NA NA NA NA NA NA NA NA
DKXF NA NA NA NA NA NA NA NA NA
попытка Сорена
Кажется, у меня есть нечисловой аргумент для бинарного оператора для SX5P - SX5P1d
:
> library(lubridate)
Attaching package: ‘lubridate’
The following objects are masked from ‘package:data.table’:
hour, mday, month, quarter, wday, week, yday, year
The following object is masked from ‘package:base’:
date
> library(data.table)
>
>
> url <- 'https://www.stoxx.com/document/Indices/Current/HistoricalData/hbrbcpe.txt'
> df <- read.table(url, sep = ';', skip = 4, stringsAsFactors = FALSE)
> names(df) <- c('Date','SX5P','SX5E','SXXP','SXXE','SXXF','SXXA','DK5F','DKXF')
> df$Date <- dmy(df$Date)
> df$End_month_date <- ceiling_date(df$Date,unit="month") - days(1)
>
> dt <- as.data.table(df)
>
> #daily returns
> dt[, c("last_date",'SX5P1d','SX5E1d','SXXP1d','SXXE1d','SXXF1d','SXXA1d','DK5F1d','DKXF1d') := shift(.SD[,c("Date",'SX5P','SX5E','SXXP','SXXE','SXXF','SXXA','DK5F','DKXF')], n=1, fill=NA, type=c("lag")),]
Warning messages:
1: In `[.data.table`(dt, , `:=`(c("last_date", "SX5P1d", "SX5E1d", :
Supplied 9 items to be assigned to 7673 items of column 'last_date' (recycled leaving remainder of 5 items).
2: In `[.data.table`(dt, , `:=`(c("last_date", "SX5P1d", "SX5E1d", :
Supplied 9 items to be assigned to 7673 items of column 'SX5P1d' (recycled leaving remainder of 5 items).
3: In `[.data.table`(dt, , `:=`(c("last_date", "SX5P1d", "SX5E1d", :
Supplied 9 items to be assigned to 7673 items of column 'SX5E1d' (recycled leaving remainder of 5 items).
4: In `[.data.table`(dt, , `:=`(c("last_date", "SX5P1d", "SX5E1d", :
Supplied 9 items to be assigned to 7673 items of column 'SXXP1d' (recycled leaving remainder of 5 items).
5: In `[.data.table`(dt, , `:=`(c("last_date", "SX5P1d", "SX5E1d", :
Supplied 9 items to be assigned to 7673 items of column 'SXXE1d' (recycled leaving remainder of 5 items).
6: In `[.data.table`(dt, , `:=`(c("last_date", "SX5P1d", "SX5E1d", :
Supplied 9 items to be assigned to 7673 items of column 'SXXF1d' (recycled leaving remainder of 5 items).
7: In `[.data.table`(dt, , `:=`(c("last_date", "SX5P1d", "SX5E1d", :
Supplied 9 items to be assigned to 7673 items of column 'SXXA1d' (recycled leaving remainder of 5 items).
8: In `[.data.table`(dt, , `:=`(c("last_date", "SX5P1d", "SX5E1d", :
Supplied 9 items to be assigned to 7673 items of column 'DK5F1d' (recycled leaving remainder of 5 items).
9: In `[.data.table`(dt, , `:=`(c("last_date", "SX5P1d", "SX5E1d", :
Supplied 9 items to be assigned to 7673 items of column 'DKXF1d' (recycled leaving remainder of 5 items).
> dt[,`:=`(SX5P_r=SX5P-SX5P1d,
+ SX5E_r=SX5E-SX5E1d,
+ SXXP_r=SXXP-SXXP1d,
+ SXXE_r=SXXE-SXXE1d,
+ SXXF_r=SXXF-SXXF1d,
+ SXXA_r=SXXA-SXXA1d,
+ DK5F_r=DK5F-DK5F1d,
+ DKXF_r=DKXF-DKXF1d)]
Error in SX5P - SX5P1d : non-numeric argument to binary operator
> #monthly returns
> returns <- dt[,list(SX5P=sum(SX5P_r,na.rm=T),
+ SX5E=sum(SX5E_r,na.rm=T),
+ SXXP=sum(SXXP_r,na.rm=T),
+ SXXE=sum(SXXE_r,na.rm=T),
+ SXXF=sum(SXXF_r,na.rm=T),
+ SXXA=sum(SXXA_r,na.rm=T),
+ DK5F=sum(DK5F_r,na.rm=T),
+ DKXF=sum(DKXF_r,na.rm=T)),by="End_month_date"]
Error in `[.data.table`(dt, , list(SX5P = sum(SX5P_r, na.rm = T), SX5E = sum(SX5E_r, :
object 'SX5P_r' not found
Вот dt
после операции shift
, сгенерировавшей предупреждающие сообщения:
> head(dt)
Date SX5P SX5E SXXP SXXE SXXF SXXA DK5F DKXF End_month_date
1: 1986-12-31 775.00 900.82 82.76 98.58 98.06 69.06 645.26 65.56 1986-12-31
2: 1987-01-01 775.00 900.82 82.76 98.58 98.06 69.06 645.26 65.56 1987-01-31
3: 1987-01-02 770.89 891.78 82.57 97.80 97.43 69.37 647.62 65.81 1987-01-31
4: 1987-01-05 771.89 898.33 82.82 98.60 98.19 69.16 649.94 65.82 1987-01-31
5: 1987-01-06 775.92 902.32 83.28 99.19 98.83 69.50 652.49 66.06 1987-01-31
6: 1987-01-07 781.21 899.15 83.78 98.96 98.62 70.59 651.97 66.20 1987-01-31
last_date SX5P1d SX5E1d SXXP1d SXXE1d SXXF1d SXXA1d DK5F1d DKXF1d
1: NA NA NA NA NA NA NA NA NA
2: Date Date Date Date Date Date Date Date Date
3: SX5P SX5P SX5P SX5P SX5P SX5P SX5P SX5P SX5P
4: SX5E SX5E SX5E SX5E SX5E SX5E SX5E SX5E SX5E
5: SXXP SXXP SXXP SXXP SXXP SXXP SXXP SXXP SXXP
6: SXXE SXXE SXXE SXXE SXXE SXXE SXXE SXXE SXXE