расширенный фильтр Калмана для трехмерного позиционирования - PullRequest
2 голосов
/ 25 июня 2019

Я пытаюсь использовать расширенный фильтр Калмана для определения местоположения моего мобильного устройства в пряности с помощью метода TDoA.
Проблема, которую я получаю, состоит в том, что мой конус не сходится к положению истинной земли.
ИногдаМатрица P, Xh и X имеют комплексные значения - это нормально?
Должен ли я что-то изменить или добавить условия остановки.
часть моего кода похожа на

%% inititialisation
% Covarience matrix of process noise
Q=[ 0.01 0 0;0 0.01 0;0 0 0.01];
% Covarience matrix of measurment noise
R=[ 0.001  0.0005 0.0005 ; 0.0005 0.001  0.0005 ; 0.0005 0.0005 0.001];
% System Dynamics
A=[1 0 0 ;0 1 0 ;0 0 1 ];
%Assumed initial conditions
Xh(:,1)=[0 0 0]';
B1=[2 2 3; 1.5 2 3; 2.5 2 3; 2 1.5 3; 2 2.5 3]; %the position of 5 beacons installes in the ceiling
%inital value of covarience of estimation error
P(:,:,1)=[0 0 0 ; 0 0 0 ; 0 0 0 ];
Xb=[2 2 2];
X(:,1)=Xb;%
Z(:,1)=Dd20(:,1);%Dd20 is a matrix of TDOA 3*n ofsize
for n=1:2000
% PROCESS AND OBSERVATION PROCESS WITH GAUSSINA NOISE
X(:,n+1)=A*X(:,n)+[sqrt(((Q(1,1))*randn(1)));sqrt((Q(2,2))*randn(1));sqrt((Q(3,3))*randn(1))]; % State process % w generating process noise

Z(:,n+1)=Z(:,n)+[sqrt(R(1,1))*randn(1);sqrt(R(1,1))*randn(1);sqrt(R(1,1))*randn(1)];%mesurment matrix

hsn(:,n+1)=[(sqrt(((X(1,n+1)-B1(5,1))^2+(X(2,n+1)-B1(5,2))^2+(X(3,n+1)-B1(5,3))^2))-(sqrt(((X(1,n+1)-B1(1,1))^2+(X(2,n+1)-B1(2,1))^2+(X(3,n+1)-B1(1,3))^2))));
(sqrt(((X(1,n+1)-B1(2,1))^2+(X(2,n+1)-B1(2,2))^2+(X(3,n+1)-B1(2,3))^2))-(sqrt(((X(1,n+1)-B1(1,1))^2+(X(2,n+1)-B1(2,1))^2+(X(3,n+1)-B1(1,3))^2))));
(sqrt(((X(1,n+1)-B1(4,1))^2+(X(2,n+1)-B1(4,2))^2+(X(3,n+1)-B1(4,3))^2))-(sqrt(((X(1,n+1)-B1(1,1))^2+(X(2,n+1)-B1(2,1))^2+(X(3,n+1)-B1(1,3))^2))))]  +[sqrt(((R(1,1))*randn(1)));sqrt(((R(1,1))*randn(1)));sqrt(((R(1,1))*randn(1)))];

% prediction of next state
Xh(:,n+1)=A*Xh(:,n);% ESTIMATE
P(:,:,n+1)=A*P(:,:,n)*A'+Q;% PRIORY ERROR COVARIENCE

% CORRECTION EQUTIONS
H(:,:,n+1)=[(Xh(1,n+1)-B1(5,1))/((sqrt(((Xh(1,n+1)-B1(5,1)^2)+(Xh(2,n+1)-B1(5,2)^2)+(Xh(3,n+1)-B1(5,3)^2))))-(Xh(1,n+1)-B1(5,1))/(sqrt(((Xh(1,n+1)-B1(1,1)^2)+(Xh(2,n+1)-B1(1,2)^2)+(Xh(3,n+1)-B1(1,3)^2))))),...
(Xh(2,n+1)-B1(5,2))/((sqrt(((Xh(1,n+1)-B1(5,1)^2)+(Xh(2,n+1)-B1(5,2)^2)+(Xh(3,n+1)-B1(5,3)^2))))-(Xh(2,n+1)-B1(5,2))/(sqrt(((Xh(1,n+1)-B1(1,1)^2)+(Xh(2,n+1)-B1(1,2)^2)+(Xh(3,n+1)-B1(1,3)^2))))),
(Xh(3,n+1)-B1(5,3))/((sqrt(((Xh(1,n+1)-B1(5,1)^2)+(Xh(2,n+1)-B1(5,2)^2)+(Xh(3,n+1)-B1(5,3)^2))))-(Xh(3,n+1)-B1(5,3))/(sqrt(((Xh(1,n+1)-B1(1,1)^2)+(Xh(2,n+1)-B1(1,2)^2)+(Xh(3,n+1)-B1(1,3)^2)))));
(Xh(1,n+1)-B1(2,1))/(sqrt(((Xh(1,n+1)-B1(2,1)^2)+(Xh(2,n+1)-B1(2,2)^2)+(Xh(3,n+1)-B1(2,3)^2))))-(Xh(1,n+1)-B1(1,1))/((sqrt(((Xh(1,n+1)-B1(1,1)^2)+(Xh(2,n+1)-B1(1,2)^2)+(Xh(3,n+1)-B1(1,3)^2))))),
(Xh(2,n+1)-B1(2,2))/(sqrt(((Xh(1,n+1)-B1(2,1)^2)+(Xh(2,n+1)-B1(2,2)^2)+(Xh(3,n+1)-B1(2,3)^2))))-(Xh(2,n+1)-B1(1,2))/((sqrt(((Xh(1,n+1)-B1(1,1)^2)+(Xh(2,n+1)-B1(1,2)^2)+(Xh(3,n+1)-B1(1,3)^2))))),
(Xh(3,n+1)-B1(2,3))/(sqrt(((Xh(1,n+1)-B1(2,1)^2)+(Xh(2,n+1)-B1(2,2)^2)+(Xh(3,n+1)-B1(2,3)^2))))-(Xh(3,n+1)-B1(1,3))/((sqrt(((Xh(1,n+1)-B1(1,1)^2)+(Xh(2,n+1)-B1(1,2)^2)+(Xh(3,n+1)-B1(1,3)^2)))));
(Xh(1,n+1)-B1(4,1))/(sqrt(((Xh(1,n+1)-B1(4,1)^2)+(Xh(2,n+1)-B1(4,2)^2)+(Xh(3,n+1)-B1(4,3)^2))))-(Xh(1,n+1)-B1(1,1))/((sqrt(((Xh(1,n+1)-B1(1,1)^2)+(Xh(2,n+1)-B1(1,2)^2)+(Xh(3,n+1)-B1(1,3)^2))))),
(Xh(2,n+1)-B1(4,2))/(sqrt(((Xh(1,n+1)-B1(4,1)^2)+(Xh(2,n+1)-B1(4,2)^2)+(Xh(3,n+1)-B1(4,3)^2))))-(Xh(2,n+1)-B1(1,2))/((sqrt(((Xh(1,n+1)-B1(1,1)^2)+(Xh(2,n+1)-B1(1,2)^2)+(Xh(3,n+1)-B1(1,3)^2))))),
(Xh(3,n+1)-B1(4,3))/(sqrt(((Xh(1,n+1)-B1(4,1)^2)+(Xh(2,n+1)-B1(4,2)^2)+(Xh(3,n+1)-B1(4,3)^2))))-(Xh(3,n+1)-B1(1,3))/((sqrt(((Xh(1,n+1)-B1(1,1)^2)+(Xh(2,n+1)-B1(1,2)^2)+(Xh(3,n+1)-B1(1,3)^2)))));
 ]; % Jacobian matrix

%THIS SUBROTINE COMPUTES KALMAN GAIN
K(:,:,n+1)=P(:,:,n+1)*H(:,:,n+1)'*(R+H(:,:,n+1)*P(:,:,n+1)*H(:,:,n+1)')^(-1);
Inov=Z(:,n+1)-hsn(:,n);% INNOVATION
Xh(:,n+1)=Xh(:,n+1)+ K(:,:,n+1)*Inov; %computes final estimate
P(:,:,n+1)=(eye(3)-K(:,:,n+1)*H(:,:,n+1))*P(:,:,n+1);% %computes covarience of estimation error
end
...