Я преобразовал свой набор данных с аннотациями в стиле Pascal VOC в формат файла TFRecord и попытался обучить Faster R-CNN, используя модифицированную версию конфигурации конфигурации Tensorflow в rapid_rcnn_inception_v2_coco_2018_01_28.tar.gz
Однако при запуске model_main.py я получаю предупреждение о том, что почти все классы "не имеют примеров истинности"
(Я уже писал об этом здесь: Как исправить «следующие классы не имеют основополагающих примеров истинности» при запуске object_detection / model_main.py? )
и тензорная доска показывает правую основную правду на изображениях с правой стороны, но не обнаруживает на изображениях слева.
Почему моя модель не делает никаких прогнозов и mAP = 0? Может быть проблема в том, что я не использую модель из https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
у которого уже есть Pascal mAP как метрика?
Это файл моей модели .config (с правильными путями, конечно):
model {
faster_rcnn {
num_classes: 821
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: 'faster_rcnn_inception_v2'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: 900000
learning_rate: .00002
}
schedule {
step: 1200000
learning_rate: .000002
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
#fine_tune_checkpoint: "PATH_TO/models/model/model.ckpt"
#from_detection_checkpoint: true
#load_all_detection_checkpoint_vars: true
num_steps: 5000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_vertical_flip {
}
}
data_augmentation_options {
random_rotation90 {
}
}
}
train_input_reader {
label_map_path: "PATH_TO/data/pascal_label_map.pbtxt"
tf_record_input_reader {
input_path:"PATH_TO/data/pascal_train.record-?????-of-00010"
}
}
eval_config {
num_examples: 1886
# Note: The below line limits the evaluation process to 100 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 1886
#use_moving_averages: false
metrics_set: "pascal_voc_detection_metrics"
}
eval_input_reader {
label_map_path: "PATH_TO/data/pascal_label_map.pbtxt"
shuffle: false
num_readers: 10
tf_record_input_reader {
input_path: "PATH_TO/data/pascal_val.record-?????-of-00010"
}
}